
SMOG

Version 2.6-beta

User’s Manual

April 30, 2025

Since this is a dynamic document that is continually updated

as the code is modified, it is possible that some elements

did not build properly, or may have errors.

Northeastern University • Rice University

Authors:

Jeffrey Noel, Mariana Levi, Antonio Oliveira, Vincius Contessoto,

Mohit Raghunathan, Heiko Lammert, Ryan Hayes,
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i

Should you read this manual?

If you would only like to use the basic functionality of SMOG 2 (i.e. the standard sup-

ported models), then you may find that the README file associated with the distribution

provides all the information you need. This manual provides a more detailed description

of the basic usage guidelines, in addition to advanced usage information and detailed

descriptions of the underlying methodologies/models. For basic users, if the README is

not sufficient, then Chapters 1, 2, 3 and 4 will help you get started. For more advanced

users, who may wish to modify structure-based models (e.g. extending to new residue

types, ligands, electrostatics, etc), then consulting Chapters 5, 6, 7 and 8 will be nec-

essary. We additionally provide appendices that have technical details that may be of

interest to some users. While we try to provide all pertinent information here, don’t

hesitate to contact us for clarification.

SMOG 2, and all associated files, are distributed free of charge, made available under

the GNU General Public License.
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Chapter 1

Introduction

1.1 What are Structure-Based Models?

Structure-based models (i.e. SBMs, or SMOG models) define a particular known confor-

mation (or a subset of interactions defined by the structure) as a potential energy mini-

mum. With this being the only requirement, there is an endless number of ways in which

one may construct a structure-based model. For example, one may build protein-specific

and RNA-specific variants, the resolution of the model can be varied[1, 2], multiple min-

ima may be included[3, 4], the degree to which non-native interactions are stabilizing

can be adjusted, and electrostatics (explicit, or implicit ions) can be included[5]. The

utility of these models is equally broad, where they may be applied for understanding

dynamics, or for structural modeling objectives, as discussed elsewhere[6]. With such

flexibility, this general class of models can be tailored to ask specific questions about

biomolecular processes. In the present document, we describe a set of computational

tools that allows one to use previously-developed structure-based models, as well as

design and implement new variations that are suited for your specific needs.

In the simplest form, a structure-based model defines a single configuration as the global

potential energy minimum, where all intra- and inter-molecular interactions are assigned

minima that correspond to that structure. This fully native-centric variant of the model

is colloquially referred to as a “vanilla” structure-based model. In terms of the energy

landscapes of biomolecules, these vanilla models represent an energetically unfrustrated

landscape[7, 8]. Since biomolecular landscapes possess some degree of energetic rough-

ness, it is often desirable to extend structure-based models to include both native and

non-native interactions. As such, in the SMOG 2 software package, we provide two

energetically unfrustrated models by default, upon which additional interactions may

be added by the user. Specifically, this distribution provides the coarse-grained Cα

1



Chapter 1. Introduction 2

structure-based model for proteins, as developed by Clementi et al. [1] and the all-atom

structure-based model, as developed by Whitford et al. [2]. While the Cα model is

only defined for proteins, the all-atom model supports proteins, RNA, DNA and some

ligands. Non-default force field parameters may be downloaded from the smog-server

force field repository. Since there has been a number of extensions in the all-atom model

over the last several years, a complete description of the energetic parameters is given

in Appendix A.

1.2 What does SMOG 2 do?

SMOG 2 is a software package designed to allow the user to start with a structure of

a biomolecule (i.e. a PDB file) and construct a structure-based model, which is then

simulated using Gromacs [9], NAMD [10], openMM, or LAMMPS. In addition, the

OpenSMOG libraries provide an interface between SMOG 2 and OpenMM that allows

for a much wider range of models to be developed. We previously implemented an

online server (SMOG 1) that was capable of providing the vanilla flavor of structure-

based models, along with a few adjustable parameters. SMOG 2 is a nearly complete

rewrite of the original software package, and it provides four major advantages over its

predecessor:

• Extensibility – One may add new residue and molecule types without source-code

modifications.

• Portability – By building force field definitions on generally-defined XML-formatted

files, researchers may easily distribute and share new SMOG model variants. We

encourage users to make their models publicly available through the SMOG 2 Force

Field Repository.

• Generalizability – Every energetic parameter may be varied, and additional ener-

getic interactions (even non-native) may be included.

• Multi-resolution capabilities – Any level of structural resolution may be imple-

mented, as well as multi-resolution variations.

It is important to note that, in order to adjust the general definition of a class of SMOG

models, one simply needs to introduce changes to the XML template files. The templates

are not statically-linked to SMOG 2, which allows any user to easily choose from a library

of models at runtime.

http://openmm.org
http://smog-server.org
https://smog-server.org/smog2/template_repo/
https://smog-server.org/smog2/template_repo/


Chapter 2

Installation

The SMOG 2 software is available as a direct source-code download, or as a preconfigured

container. If one chooses to download the code, or use the beta/git version, it is necessary

to configure a few settings and ensure that appropriate modules are available at runtime.

Below are instructions on how to configure SMOG 2 properly on your local machine

(source-code download), as well as information on the preconfigured container options.

2.1 Container-based usage

The easiest and fastest way to get started with SMOG 2 is to use a container. As

described at the Docker website: A container is a standard unit of software that packages

up code and all its dependencies so the application runs quickly and reliably from one

computing environment to another.

We provide containerized forms of SMOG 2 via Docker and Singularity images. Gener-

ally, if you are using a personal computer, you may find Docker to be easier. However,

if you plan to run SMOG 2 on a shared resource, Singularity may be preferred. The

SMOG 2 distribution/repo also provides detailed instructions for generating containers

with Docker and Singularity, so that users can build customized containers, if needed.

2.1.1 Docker container

If Docker is running on your computer, the following command will pull the container

with the most recently-released version of SMOG 2 (change the tag for other versions,

such as “gitversion”, or “v2.4.4”):

> docker pull smogserver/smog2:stable

3

https://www.docker.com/resources/what-container
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The container can then be launched with:

> docker run -it --rm smogserver/smog2:stable

You are initially placed into the directory /workdir inside the container at a bash prompt.

Note that the container is essentially a stripped down Ubuntu Linux. vi and nano text

editors are available. All SMOG 2 executables are available in the $PATH.

IMPORTANT: You will want to connect the container to the files on your computer,

e.g. to load PDB files and to write output files. This is done with the -v switch, which

connects (mounts) a directory on your file system to a directory inside the container.

This can be done however you like, but we recommend the following:

> docker run -it --rm -v $(pwd):/workdir smogserver/smog2:stable

$pwd refers to your present working directory. /workdir is an arbitrary directory that we

have created inside of the container. When inside the container, it should thus effectively

start you in your present working directory with a bash prompt. Note that in this case,

even though the directory is named /workdir, it is in fact the directory from which

you launched docker, so editing and deleting files will actually change the files on your

machine! Make sure all the files you need are available in $pwd and its subdirectories,

as these files will be available to the container in /workdir and its subdirectories. The

container is unable to interact with any directories above $pwd.

2.1.2 Singularity container

If Singularity is installed on your computer, the following command will pull the con-

tainer for the most recent released version of SMOG 2:

> singularity pull --arch amd64 library://smog-server/library/smog2:stable

If you want to use a different version, then change “stable” to the desired version (e.g.

gitversion, v2.4.4, etc). The above command will download the container in the form of

a Singularity Image Format file: smog2 stable.sif

You may find that a specific container is available in Docker, but not Singularity. In

that case, you can pull and convert the Docker container into a Singularity sif file with

the command (this example simply pulls the stable release):

> singularity pull smog2 stable.sif docker://smogserver/smog2:stable

The container can then be launched with:

> singularity shell smog2 stable.sif
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At this point, the only visible difference will be that the command prompt says “sin-

gularity”. However, SMOG 2 and all SMOG Tools will be available in your path. Just

type “smog2” to get going!

2.2 Manual configuration (non-container-based usage)

2.2.1 Prerequisites

SMOG 2 runs on all Unix-like operating systems. The prerequisites for SMOG 2 are

Perl Programming Language

Perl Data Language (PDL),

as well as the following modules, which are available through the Perl module managing

utility CPAN, conda, apt-get (Ubuntu) or manual installation:

XML::Simple

XML::SAX::ParserFactory

XML::Validator::Schema

XML::LibXML

Exporter

PDL

Getopt::Long

Scalar::Util

Finally, your machine must have Java Runtime Environment v1.7 or greater.

We have found that using Conda, or apt-get to install required libraries is typically more

straightforward than relying only on CPAN. If you would like to use Conda, or apt-get,

see the README file for details.

2.2.2 Final configuration/install steps

Note: configuration steps changed after SMOG v2.4.4! If you are using

v2.4.4, or an earlier version, please find the configure instructions in the

associated manual.

http://www.perl.org/
http://pdl.perl.org/?page=install
http://www.cpan.org/modules/INSTALL.html


Chapter 2. Installation 6

Before running SMOG 2, you must configure it on your local machine. This is accom-

plished through a one-step (sometimes two-) process:

(common usage) Configure with:

> source configure.smog2

This will set the required environment variables for your current session. Among other

things, this will add the smog bin to your PATH and perform some basic health checks.

Sourcing only sets up your environment for the current session. If you want to use

SMOG 2 frequently, you should put the bin directory in your PATH. When you run

configure.smog2, it will tell you exactly how to update your path for persistent usage.

(give Perl version) When sourcing configure.smog2, the script will search for an avail-

able version of Perl, and the environment will be set using that version. However,

this is not guaranteed to find the version that you intend. If you want to use a dif-

ferent version of Perl, you have to set the perl4smog variable. On most linux sys-

tems, the default location of Perl is "/usr/bin/perl", whereas on OSX it is typically

"/opt/local/bin/perl". Setting perl4smog can be accomplished in two ways.

First, you may export the values:

> export perl4smog=<give value>

> source configure.smog2

The second option is to set the variable:

> perl4smog=<give value> source configure.smog2

(Install in a specific location) Instead of configuring SMOG 2 in the current directory,

one may also have the contents copied to a desired directory, configure the program and

then write-protect the files. This is desirable when using a shared resource. It is also a

good idea if you think you are prone to accidentally editing/corrupting code. To specify

the install location, set the variable smog install dir.

As a note, we have found that some Linux distributions require that you replace source

with bash.

2.2.3 Verify your SMOG configuration

If SMOG is properly configured, then you will be able to run SMOG 2 with the following

command:
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> smog2

and you will be greeted with a message that looks similar to:

In addition to verifying that SMOG 2 will launch, it is highly recommended that you

also run the full set of test scripts, which are in the SMOG-CHECK subdirectory of the

distribution.

SMOG-CHECK contains a single script that will launch tests of smog2, smog tools and

the Shadow Contact Map program (SCM). When everything works well, performing the

checks is as easy as issuing a single command (assuming configure.smog2 was sourced

and smog2 is in your path):

>./checkall

If all tests are passed, then you are ready to go! No need to read any further!

In some cases (e.g. if you edit the source code), it may be desirable to test some aspects

of the SMOG software. In that case, you may run the three sets of checks separately

with the following commands:

>./smog-check

>./smog-tool-check

>./scm-check

It may also be desirable to only employ specific checks. If you only want to test some of

the tools, you need to give the names of the tools as arguments for smog-tool-check.

For example, if you only want to test smog adjustPDB, then use the command:

>./smog-tool-check adjustPDB
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Similarly, you may want to run/rerun some smog-check tests. You can run a single test

with the command

>./smog-check N

where N is the index of the check. You can also run a range of tests with

>./smog-check N M



Chapter 3

Using SMOG 2

This chapter describes the usage of SMOG 2. It is recommended that all users read this

chapter before using the software.

3.1 Preparing the input PDB file

3.1.1 PDB file format

To prepare a SMOG force field, a structural model (e.g. crystallographic, NMR, or

cryo-EM model) must be provided as a PDB file, in accordance with the PDB Content

Guide. An exception is that that the coordinates may be supplied in free-format, as

long as you issue the -freecoor flag when calling smog2.

To avoid I/O issues, please follow these additional guidelines when preparing your PDB

file for use with SMOG 2:

• Only use a text editor (e.g. vi, or emacs) to prevent insertion of hidden characters.

• Earlier versions of SMOG 2 have very strict format requirements. Now, the PDB

preprocessor (see next section) has been significantly enhanced, such that minimal

manual editing of the PDB file is required.

• Chain identifiers are almost completely ignored. That is, if there is a change in

chain ID, and there is not a TER line between the residues, then the residues will

be interpreted as being in the same chain. However, all atoms in a single residue

must have the same chain ID.

9
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• Only residues and atoms within a residue defined in the force field templates will

be recognized by SMOG 2. Unless a coarse-grained template is designated with

-tCG, unrecognized residues and atoms will lead to a PDB parse error, and the

program will exit.

• Residue name field is officially columns 18-20 in the PDB definition, but smog2

reads columns 18-21 since column 21 is unused.

3.1.2 Preprocessing the PDB file

As discussed in Chapter 6, SMOG 2 reads “template” files in order to generate force field

files. As such, each PDB file has to fully conform to the molecular structure definitions

provided by the templates. For example, the default all-atom templates (provided in

SBM AA) distinguish between terminal and non-terminal residues (i.e. in proteins there

is an OXT in place of a peptide bond for terminal residues). In the default templates,

the C-terminal amino acid residues have the suffix “T” added to their their three-letter

code (e.g. GLY vs. GLYT).

To make preprocessing more straightforward, the smog adjustPDB tool is provided. It is

used to check the overall format of the PDB file and check that every residue is defined in

a manner that is consistent with the force field that you plan to use for your simulation.

For usage guidelines, see Section 5.1.

3.2 Generating a Structure-Based Model

SMOG 2 supports a broad range of structure-based models. The all-atom [2] and Cα [1]

models are provided as defaults. See Appendix A for full details of the default models.

By running SMOG, you will generate the .top, .gro, and .ndx files necessary to perform

a structure-based simulation in Gromacs. These files may also be used, with limited

support, in NAMD, or OpenMM. The files may also be converted to a format for use

with LAMMPS. For full support in OpenMM, you must use the OpenSMOG libraries

and give SMOG 2 the flag -OpenSMOG, which will generate an additional XML file.

Additional output files are provided, for your information.

In order to use SMOG 2, the only required file is molecular structure in PDB format

(typically, after preprocessing). As described below, one can then use the default models,

or one may specify an alternate model by providing “template files” that define a general

force field.

http://gromacs.org
http://www.ks.uiuc.edu/Research/namd/
http://openmm.org
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3.2.1 Interactive force field selection

One may specify a force field on the command line, or the force field may be selected

interactively. For example, if you only provide a PDB file with the command

> smog2 -i yourFile.pdb

then you will be prompted to select the force field you would like to use. The smog ions

tool can also automatically bring up an interactive prompt.

Configuring your own custom SMOG 2 Force Field Library When using the

interactive force field selection option, the force field is selected from a library. By

default, the library is set to the directory $SMOG PATH/share/templates. You can add

more force fields to this library, or you create your own custom library.

To set up a library, you must have a directory that will serve as your library directory.

Within that directory, you should have a separate directory for each set of templates

that you would like to have available. Each template directory should have the following

files:

• .sif file

• .bif file

• .nb file

• .b file

• .citation file (optional)

• .ions.def file (only needed for smog ions)

• .map file (only needed for smog adjustPDB)

In the main library directory, you must also have a file called “ff.info” that lists the

template directories and provides descriptions of each force field. For an example, check

the directory $SMOG PATH/share/templates. If you do not want to use the default

library path, you can specify a separate directory to serve as your template library by

setting the shell variable SMOG FFDIR.

3.2.2 Default All-Atom Model

The all-atom potential energy function is defined through the template files found in

$SMOG PATH/SBM AA. These files define:
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1) the covalent geometry of amino acids, nucleic acids, some ligands, as well as bioinor-

ganic atoms

2) the energetic and system parameters (e.g. mass, charge, interaction strengths)

To generate all-atom force field and coordinate files for the default model (i.e. .top and

.gro files), issue the command:

> smog2 -i yourFile.pdb -AA

where yourFile.pdb is the name of the file containing your molecular system.

If you would like to specify a different all-atom model, then use the command:

> smog2 -i yourFile.pdb -t templateDirName

where templateDirName is the name of the directory containing the desired template

files.

3.2.3 Default Cα model

To generate force field and coordinate files for the default Cα model, issue the command:

> smog2 -i yourFile.pdb -CA

If you would like to use a different set of CG templates:

> smog2 -i yourFile.pdb -t templateDirName -tCG CGtemplateDirName

Note that an additional set of templates are required when using a coarse-grained model.

The option -tCG is used to indicate the precise coarse-grained model that should be pre-

pared. When -tCG is given, the -t flag is used to designate the templates that initially

process the PDB for contact analysis. Normally an all-atom PDB is provided, since na-

tive contact maps make the most sense when generated from an all-atom structure (note

that the “Shadow” map only makes sense with atomic graining). The -tCG templates

are then used to construct the CG energetic model. In the above example, the PDB has

residues and atoms defined in the -t templates, and these definition will also be used

for contact map generation. See Chapter 5.8 for a detailed description of the supported

contact map calculations.
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3.2.4 Default Gaussian contact potential models

The default Gaussian models have energetic and structural parameters that are tailored

to be similar to the LJ contact potential models, while allowing for a more flexible Gaus-

sian contact shape. To generate force field and coordinate files for the default Gaussian

all-atom model, issue the command:

> smog2 -i yourFile.pdb -AAgaussian

or for the default Gaussian Cα model,

> smog2 -i yourFile.pdb -CAgaussian.

3.2.5 Using non-default models

One of the key features of SMOG 2 is that the force fields are defined by a set of general

“template” files (see Sec. 6.1). The template files must be in a single directory. The

template directory may then be given to SMOG 2 with the command:

> smog2 -i yourFile.pdb -t templateDirName

where templateDirName is the name of the directory containing the desired template

files.

3.2.6 User-provided contact map

If you have generated contacts yourself, these can be used instead of using the internal

SMOG 2 routines. A single file containing all the contacts in a list can be specified at

the command line with the flag -c. For example:

> smog2 -i <pdbfile> -c contacts.txt ...

will read the list of contacts in file contacts.txt

chainNum i1 atomNum i1 chainNum j1 atomNum j1 (opt. distance)

chainNum i2 atomNum i2 chainNum j2 atomNum j2 (opt. distance)

chainNum i3 atomNum i3 chainNum j3 atomNum j3 (opt. distance)

etc ...
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which should be formatted as a single line per contact, whitespace delimited, where

each line has the two atoms that are interacting and their respective chain numbers.

The chains are numbered starting from 1 by the order of occurence in the PDB file.

The atomNum should be consistent with atom numbers in the input PDB file. The fifth

column can contain a numeric distance in Å, which, if provided, will be used instead of

the native distance. If using -tCG to obtain a coarse grained topology, the input contact

map should designate residue numbers instead of atom numbers, again with the same

numbering as in the input PDB file.

3.3 Input options

SMOG 2 always requires a PDB file. If no model is specified, then the user will have

to interactively select from the available force fields. Table 3.1 shows the currently-

supported input arguments.
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Input Option Usage Default value

Required

-i <string> input PDB file to define the model molecule.pdb

Optional

-t <string> folder containing templates none

-AA use the default all-atom model N/A

-CA use the default Cα model N/A

-AAgaussian use default all-atom model with
gaussian contacts

N/A

-CAgaussian use default Cα model with gaussian
contacts

N/A

-tCG <Folder Name> folder containing templates used for
coarse graining.

none

-c <string> input contact file name none

-g <string> output .gro file name smog.gro

-freecoor read input PDB assuming space-
delimited free-formatting for coordi-
nates

none

-o <string> output .top file name smog.top

-s <string> output .contacts file name smog.contacts

-n <string> output .ndx file name smog.ndx

-OpenSMOG produce output files that are com-
patible with the OpenSMOG mod-
ule for OpenMM

off

-OpenSMOGxml output file name for OpenSMOG
xml file

smog.xml

-dname <string> default name to use for all output
files

smog

-backup [yes|no] enable/disable generation of backed
up outputs

yes

-warn [N] convert the first N fatal errors to
warnings. Convert all errors if N=-1
(Should be used with extreme cau-
tion)

0

-limitbondlength if bond length exceeds limit (in nm),
set it to the limiting value

N/A

-limitcontactlength if contact length exceeds limit (in
nm), set it to the limiting value

N/A

-deleteshortcontact if a contact length is too short, don’t
include it in the model

N/A

-ignH ignore any atoms with name start-
ing with ’H’ in the internal contact
algorithm

N/A

-nocheck turn off template cross-validation
checks

N/A

-gen map read the .bif file, generate a mapping
file for smog adjustPDB and exit

N/A

-help show supported options

Table 3.1: Flags supported by SMOG v2.6-beta
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Performing a simulation, or

calculation

Once you have generated the .top and .gro (and possibly .xml) files with SMOG, you

are ready to perform a simulation. Rather than write a new molecular dynamics sim-

ulation package, SMOG generates input files for use with Gromacs [9], NAMD [10],

OpenMM and LAMMPS, highly-optimized and parallelized MD software suites. This

allows you to use nearly every protocol that has been implemented in these programs

when performing simulations with structure-based models (e.g. replica exchange, um-

brella sampling). In addition, these packages are scalable to many processors through a

combination of MPI and thread-based parallelization, and they also support GPU accel-

eration, which allows SMOG models to fully take advantage of cutting-edge computing

resources. Here, we provide brief descriptions of how to perform SMOG model simula-

tions with OpenSMOG/OpenMM and Gromacs, while additional external references to

NAMD, OpenMM and LAMMPS are noted.

4.1 Using OpenMM

There are two different ways in which one may perform simulations with SMOG models

in OpenMM.

4.1.1 Native OpenMM support for SMOG models

Some variants of the SMOG model are supported directly by OpenMM. For example,

if you are using the default all-atom models, then (for many systems) you can run a

simulation by following the example provided on the Grossfield Group webpage.

16

http://membrane.urmc.rochester.edu/wordpress/?page_id=98


Chapter 4. Simulations 17

4.1.2 OpenSMOG module for OpenMM

Starting with version 2.4, SMOG 2 has the OpenSMOG option implemented (Described

in [11]), which allows users to generate force fields for use with OpenMM. This extends

far beyond native-OpenMM support and allows essentially all variants of SMOG models

to be used. When using this flag, SMOG 2 will generate input decks that are written for

use with the OpenSMOG module for OpenMM, which is available through conda, pip,

or source-code installation. Information on OpenSMOG is available at smog-server.org.

Below, we describe the OpenSMOG framework and how it can be used to perform

simulations with existing SMOG models, as well as how to use SMOG-model variants

in OpenMM.

4.1.2.1 Basic usage

Using OpenSMOG involves two primary steps. First, one must tell SMOG 2 to provide

force field files that are properly formatted for use with the OpenSMOG module of

OpenMM. This is achieved by using the flag -OpenSMOG with SMOG 2. This flag is

compatible with all templates that are distributed with SMOG 2. Since the OpenSMOG

flag does not change the force field, the exact same models may be used in Gromacs

(when supported), or OpenMM . The only difference when using -OpenSMOG is that one

additional XML-formatted file is produced by SMOG 2. While Gromacs only requires a

gro and top file, OpenSMOG uses the gro, top and an XML file to define a model. Once

these files have been generated, they may be used directly with the OpenSMOG module

of OpenMM. For a step-by-step tutorial that describes how to use the OpenSMOG

module in OpenMM, see the OpenSMOG documentation or OpenSMOG Tutorials page.

4.1.2.2 Advanced usage (User-defined Custom Potentials)

The power of the OpenSMOG framework is that SMOG 2 has been redesigned to in-

terface with the CustomForce framework that is supported by OpenMM. With this

extension to SMOG 2, one may define customized potential energy functions in SMOG

2 and directly use them in OpenMM. When the -OpenSMOG flag is given to SMOG 2,

your force field definitions will be applied to your molecular system and then formatted

for use with the OpenSMOG module of OpenMM. In addition to the description below,

there are numerous OpenSMOG tutorials available at the OpenSMOG Tutorials page.

Beginning with SMOG v2.4, users can define their own functional form for pairwise

native contact interactions. Support for custom nonbonded interactions (i.e. non-specific

non-contact interactions) and global constants was added in SMOG v2.4.2. We plan to

https://smog-server.org
https://opensmog.readthedocs.io/en/latest/
https://smog-server.org/tutorials/
https://smog-server.org/tutorials/
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include support for multi-body interactions and custom bonded terms in future versions.

Here, we describe examples for how to introduce a range of different contact potentials

and nonbonded parameters/functions in OpenSMOG.

N-M contact potentials: While the all-atom model uses a 6-12 potential for native

contacts and the Cα model uses a 10-12 potential, these only represent two possible

potentials that one may want to employ. If you would like to use an arbitrary N-M

potential (eq. 6.1), then you only need to make a few changes in the template files. For

example, if you want to use an 8-14 potential, one only needs to change a single line

in the .nb file of the templates. In the default all-atom model, the contact potential is

defined with the following line in the .nb file:

1 <contact func="contact_1(6,12,?,energynorm)" contactGroup="c">

2 <pairType>*</pairType>

3 <pairType>*</pairType>

4 </contact>

Listing 4.1: Defining the contact potential in the default all-atom model: AA-

whitford09.nb

The contact potential is defined by the contact 1 function, which is defined to use the

exponents 6 and 12. The question marks indicate that native contact distances are used

to define the position of the minimum, energynorm indicates that the weights should

be normalized. If one wanted to change the model to use an 8-14 potential, these lines

would simply need to read:

1 <contact func="contact_1(8,14,?,energynorm)" contactGroup="c">

2 <pairType>*</pairType>

3 <pairType>*</pairType>

4 </contact>

Listing 4.2: Redefining the contact potential in the default all-atom model

In this definition, contact 1 assigned coefficients such that the position is at the native

distance, and the depth of the well is unaltered from the original definition.

User-defined contact potentials: In addition to supporting N-M potentials, Gaussian

potentials and harmonic potentials for contacts, the OpenSMOG framework allows the

user to define nearly any pairwise function to be used with native contacts. For example,

perhaps one would like to use a potential given by:

A

(
1

r16
+ tanh(B(r − C))

)
(4.1)

where A, B and C are parameters for each contact. To implement this potential, you

would first need to define the function in the .sif file of your templates. For this particular
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function, one would add the following child element to the functions element in the .sif

file:

1 <function name="exp_tanh"

2 directive="OpenSMOG"

3 OpenSMOGtype="contact"

4 OpenSMOGpotential="weight*(1/r^16+tanh(B*(r-sigma)))"

5 OpenSMOGparameters="weight,B,sigma"

6 exclusions="1"

7 />

Listing 4.3: Defining a new contact potential

In this example, we used the term “weight” for the prefactor in the potential. This is

not always necessary, but it is if contact strengths are to be normalized by smog2. The

directive “OpenSMOG” indicates that this is a function that is only to be used with the

OpenSMOG module of OpenMM. For custom contacts, OpenSMOGtype must be set

to “contact”. The value given with OpenSMOGpotential is the functional form of the

interaction. This definition must adhere to the conventions supported by CustomBond-

Force in OpenMM, since the expressions will be passed directly to these routines. Similar

to how SMOG models are applied in Gromacs, OpenSMOG uses “bonded” routines to

define native contacts. However, these interactions are non-bonded, in character. They

are simply labeled as bonded. OpenSMOGparameters tells smog2 which terms need to

be given values for each interaction. The order of the parameters is important, since it

defines how one needs to invoke this function. The name is simply a string used for refer-

ring to the function. Finally, “exclusions” indicates whether atom pairs associated with

contacts of this type should also be listed in the exclusions section. This means, should

the model include the specific contact, in addition to the non-specific non-bonded (i.e.

derived by atom types, generally) interactions. Typically, one does not want these ad-

ditional non-specific terms, which requires the exclusions are added (i.e. exclusions=1).

If you don’t want the pairs listed under exclusions, then set exclusions to 0.

After the function has been defined (e.g. exp tanh), you may use it in the .nb file,

where specific types of pair types will be defined to interact through this potential. For

example, this function could be called

1 <contact func="exp_tanh(energynorm,1,?)" contactGroup="c10">

2 <pairType>P_10</pairType>

3 <pairType>P_10</pairType>

4 </contact>

Listing 4.4: Using a new contact potential

http://docs.openmm.org/latest/userguide/theory.html#custom-forces
http://docs.openmm.org/latest/userguide/theory.html#custom-forces
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In this case, any pairs of atoms with pairType of P 10 will interact using this potential.

Since the parameters were listed in the order weight, B, sigma, the “energynorm,1,?” in-

dicates that normalized weights and native distances (?) should be used. Normalization

of weights is explicitly turned on with the following line in the .sif file:

1 <contactGroup name="c10" intraRelativeStrength="1" normalize="1"/>

Listing 4.5: turning on normalization for a custom contact potential

User-defined dihedral potentials: In addition to cosine functions and harmonic

potentials, the OpenSMOG framework allows the user to define nearly any function to

be used with dihedral potentials. For example, perhaps one would like to use a potential

given by:

A
(
1− cos2(B ∗ (φ− C)))

)
(4.2)

where A, B and C are parameters for each dihedral. To implement this potential, you

would first need to define the function in the .sif file of your templates. For this particular

function, one would add the following child element to the functions element in the .sif

file:

1 <function name="cossquared"

2 directive="OpenSMOG"

3 OpenSMOGtype="dihedral"

4 OpenSMOGpotential="weight*(1-(cos(multiplicity*(theta-theta0))^2))"

5 OpenSMOGparameters="theta0,weight,multiplicity"

6 />

Listing 4.6: Defining a new dihedral potential

When using custom potentials, one must given functional forms that adhere to the

conventions supported by CustomTorsionForce. For example θ is the dihedral angle.

We have tried to allow for all OpenMM-supported functions to be allowed when using

OpenSMOG. Once the function is defined in the .sif file, it may be used to assign terms

to dihedrals in the .b file.

User-defined non-bonded (i.e. non-contact) potentials: In SMOG v2.4.2 (OpenS-

MOG v1.1), we added support for custom non-bonded potentials. To introduce a custom

non-bonded potential, one needs to define the CustomNonBonded element in the .sif file.

As an example, the following listing shows how one would define all non-bonded inter-

actions to be composed of an 1
r12

term, Coulomb electrostatics and a single Gaussian

potential.

1 <CustomNonBonded OpenSMOGparameters="C12,B1,C1,R1"

2 OpenSMOGcombrule="none"

3 OpenSMOGpotential="K_coul*q1*q2/dielectric*(1/r-1/r_c)

4 +C12*(1/r^12-1/r_c^12)

5 +B1*exp(-C1*(r-R1)^2)"

http://docs.openmm.org/latest/userguide/theory.html#custom-forces
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6 r_c="2.0"/>

Listing 4.7: Using a new nonbonded potential. OpenSMOGcombrule is required, but

it currently can only be set to “none”. r c is optional, but it allows one to require

OpenMM to use a specified nonbonded cutoff for any models generated with these

templates. That is, if r c is set, then the cutoff value will be passed to OpenMM

automatically.

The functional form must adhere the standards of CustomNonbondedForce in OpenMM.

To pass values for the constants, add the OpenSMOGsettings element in .sif file.

1 <OpenSMOGsettings>

2 <constants>

3 <!-- Note: In this example, K_coul is 1/5 of the value in most software

4 since SMOG models use reduced units, where room temperature

5 corresponds to 0.5.

6 -->

7 <constant name="K_coul" value="27.787097"/>

8 <constant name="dielectric" value="80"/>

9 </constants>

10 </OpenSMOGsettings>

Listing 4.8: Defining constants for use in OpenSMOG potentials

As a note, the constants may also be used in any OpenSMOG potential function (i.e.

contacts, or non-bonded terms). Also, the symbol r c is reserved by OpenMM to indicate

the cutoff distance, which may be given in the nonbonded function definition.

To specify the parameters for individual interactions, include the relevant lines in the

nonbond param entries of the extras file. Each line must provide two atom types, a

function type index (doesn’t affect OpenSMOG) and then values of the parameters (in

the order defined by OpenSMOGparameters).

As noted above, one may optionally use the templates to define the cutoff distance for

the model. Specifically, add the r c attribute to the CustomNonBonded element, where

the value is the cutoff distance (nm). This will ensure that, if the model is used in

OpenSMOG, then the proper cutoff will be applied.

4.2 Using Gromacs 4.5 or 4.6

4.2.1 All-Atom Model

First, produce a portable xdr file (in the example below, run.tpr) that describes your

simulation. This file is platform-independent and contains all parameters for your sim-

ulations. This allows you to produce a tpr file on any machine, and then move it to

http://docs.openmm.org/latest/userguide/theory.html#custom-forces
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another machine and run your simulation. The xdr file is produced by grompp (part of

the Gromacs distribution):

> grompp -f mdpfile.mdp -c gro file.gro -p top file.top -o run.tpr

The file mdpfile.mdp tells Gromacs what settings to use during the simulation, such

as the timestep size, the number of timesteps and what thermostat to use. Here is a

sample set of recommended configurations when using the default all-atom model:

1 integrator = sd ;Run control: Use Langevin Dynamics protocols.

2 dt = 0.002 ;time step in reduced units.

3 nsteps = 100000 ;number of integration steps

4 nstxout = 100000 ;frequency to write coordinates to output trajectory .trr file.

5 nstvout = 100000 ;frequency to write velocities to output trajectory .trr file

6 nstlog = 1000 ;frequency to write energies to log file

7 nstenergy = 1000 ;frequency to write energies to energy file

8 nstxtcout = 1000 ;frequency to write coordinates to .xtc trajectory

9 xtc_grps = system ;group(s) to write to .xtc trajectory (assuming no ndx file is supplied to grompp).

10 energygrps = system ;group(s) to write to energy file

11 nstlist = 20 ;Frequency to update the neighbor list

12 coulombtype = Cut-off

13 ns_type = grid ; use grid-based neighbor searching

14 rlist = 1.2 ;cut-off distance for the short-range neighbor list

15 rcoulomb = 1.2 ; cut-off distance for coulomb interactions

16 rvdw = 1.2 ; cut-off distance for Vdw interactions

17 pbc = no ; Periodic boundary conditions in all the directions

18 table-extension = 10 ; (nm) Should equals half of the box’s longest diagonal.

19 tc-grps = system ;Temperature coupling

20 tau_t = 1.0 ; Temperature coupling time constant. Smaller values = stronger coupling.

21 ref_t = 60.0 ; ~1 reduced temperature unit (see Gromacs manual or SMOG 2 manual for details)

22 Pcoupl = no ;Pressure coupling

23 gen_vel = yes ;Velocity generation

24 gen_temp = 60.0

25 gen_seed = -1

26 ld_seed = -1

27 comm_mode = angular ; center of mass velocity removal.

Listing 4.9: Sample mdp file for all-atom SMOG models used for Gromacs v4.5/4.6

Note: If you would like to perform energy minimization, simply change the integrator

settings to steep (steepest descent) or cg (conjugate gradient).

After you have generated the .tpr file with grompp, you will need to perform the simu-

lation. To run the simulation, issue the command:

> mdrun -s run.tpr -noddcheck

Is is highly recommended that you explore all Gromacs options, in order to ensure max-

imum performance (e.g. the number of threads being used). SMOG-model specific
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requirement: To use domain decomposition when performing a simulation in parallel,

using either threads, or MPI, you should add the additional flag -noddcheck. Note: For

folding of small proteins you will probably want to avoid domain decomposition, and

instead use particle decomposition by adding the option -pd when on a single node.

4.2.2 Cα Model

To run a simulation with the Cα model, the steps are the same as for the AA model,

though there are a few minor differences. First, when running grompp, you will want to

change a few settings in the .mdp file. A sample .mdp file for Cα models is given below.

1 integrator = sd ;Run control: Use Langevin Dynamics protocols.

2 dt = 0.0005 ;time step in reduced units.

3 nsteps = 100000 ;number of integration steps

4 nstxout = 100000 ;frequency to write coordinates to output trajectory .trr file.

5 nstvout = 100000 ;frequency to write velocities to output trajectory .trr file

6 nstlog = 1000 ;frequency to write energies to log file

7 nstenergy = 1000 ;frequency to write energies to energy file

8 nstxtcout = 1000 ;frequency to write coordinates to .xtc trajectory

9 xtc_grps = system ;group(s) to write to .xtc trajectory (assuming no ndx file is supplied to grompp).

10 energygrps = system ;group(s) to write to energy file

11 nstlist = 20 ;Frequency to update the neighbor list

12 coulombtype = Cut-off

13 ns_type = grid ; use grid-based neighbor searching

14 rlist = 3.0 ;cut-off distance for the short-range neighbor list

15 rcoulomb = 3.0 ; cut-off distance for coulomb interactions

16 rvdw = 3.0 ; cut-off distance for Vdw interactions

17 coulombtype = User

18 vdwtype = User

19 pbc = no ; Periodic boundary conditions in all the directions

20 table-extension = 10 ; (nm) Should equals half of the box’s longest diagonal.

21 tc-grps = system ;Temperature coupling

22 tau_t = 1.0 ; Temperature coupling time constant. Smaller values = stronger coupling.

23 ref_t = 80.0 ; ~1 reduced temperature unit (see Gromacs manual or SMOG 2 manual for details)

24 Pcoupl = no ;Pressure coupling

25 gen_vel = yes ;Velocity generation

26 gen_temp = 80.0

27 gen_seed = -1

28 ld_seed = -1

29 comm_mode = angular ; center of mass velocity removal.

Listing 4.10: Sample mdp file for Cα SMOG models used for Gromacs v4.5

The most significant difference is the use of “User-defined” vdW and Coulomb interac-

tions. This is due to the fact that the 10-12 potential is used for contact interactions

in the Cα model. In order to run mdrun (next step), it is necessary to generate table

files that define the 10-12 interaction. We provide a tool for generating these tables

($SMOG PATH/bin/smog tablegen) with the SMOG 2 distribution, which is described in

Section 5.7.
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After you have generated your tabulated potentials for the 10-12 interaction (i.e. ta-

ble file.xvg) and you have prepared a .tpr file with grompp, you can run the simulation

with the command:

> mdrun -s run.tpr -noddcheck -table table file.xvg -tablep table file.xvg

Typically, for protein folding, you will want to avoid domain decomposition and instead

use particle decomposition by adding the option -pd when on a single node. After you

perform your simulation, you can utilize any analysis tools provided with Gromacs.

4.2.3 Examples

Check $SMOG PATH/examples/gromacs4 for some complete examples with terminal

history.

4.2.4 Note on Domain Decomposition

The [ pairs ] section is treated as a bonded interaction by Gromacs and therefore

all pairs within a single domain are always calculated regardless of the .mdp parameter

rvdw. If you are using -pd with version 4.X or only OpenMP threads in version 5.0,

you can set rvdw to only take into account the non-bonded excluded volume. For the

default models this would be 0.6 nm for all-atom and 1.0 nm for Calpha. These lengths

are derived as ≈2.5rNC.

4.3 Using Gromacs 5

Gromacs 5 has a few changes that impact SMOG models. First, we don’t yet provide a

Gromacs 5 distribution with the SMOG enhancements (umbrellas, g kuh, gaussian con-

tact potentials). So, if you want to use these you can only use Gromacs 4.5. Gromacs

5 itself has changes of note: 1) OpenMP support has replaced the option of particle

decomposition and 2) OpenMP requires cutoff-scheme=Verlet and Verlet doesn’t yet

allow tabulated potentials. This has the largest impact on Cα models, which use tab-

ulated potentials. If your simulated system has less than roughly 100 atoms, you can

typically only use a single processor with v5, because additional threads are only allowed

through OpenMP. If your system is large enough, you can use multiple MPI processes

with domain decomposition to scale to multiple cores. When using Verlet lists you have

to use pbc = xyz. For all-atom simulations, Verlet lists are fine, and it is usually best

to use as many OpenMP threads as possible with -ntomp.
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4.3.1 Examples

Check $SMOG PATH/examples/gromacs5 for complete examples, including terminal

history.

4.4 Using Gromacs 2020

From an interface standpoint, nothing significant changed between 5 and 2020. While

the Gromacs developers have added many new options and have introduced performance

improvements, running SMOG models is largely unaltered.

4.4.1 Examples

Check $SMOG PATH/examples/gromacs2020 for complete example, including terminal

history.

4.5 Using NAMD

For some model variants, the force field files generated by SMOG 2 are fully compatible

with NAMD. To perform SMOG models in NAMD, please consult the NAMD manual.

For questions about running SMOG simulations in NAMD, please contact the NAMD

support team.

4.6 Using LAMMPS

The force field files generated by SMOG 2 may be converted to a format that is com-

patible with LAMMPS through use of the program (SMOG-converter). For questions

about usage, please consult the SMOG-converter developers.

4.7 Discrete Path Sampling (only available in Beta ver-

sion)

An alternate method for sampling the landscape is to use Discrete Path Sampling (DPS).

As part of the SMOG 2 package, a script (smog optim) is provided that will convert the

http://www.ks.uiuc.edu/Research/namd/2.10b1/ug/node70.html
https://github.com/CristianMicheletti/SMOG-converter
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.gro and .top files into the inputs necessary for DPS using the OPTIM/PATHSAMPLE

suite developed by the Wales Group. Currently supported interactions are: bonds, bond

angles, cosine and harmonic dihedrals, 10-12 and 6-12 contacts, anisotropic position

restraints and Debye-Hückel electrostatics. As we develop and test the protocols for

smog optim, this manual will be updated with recommended step-by-step instructions

for DPS SMOG models. For now, we just provide a few examples for how to get started.

Before discussing usage, there are a few important differences between the SMOG force

fields used in Gromacs, and those applied in DPS.

1. Even though the routines required for using DPS with SMOG models are invoked

with the “SB” flag (see listing 4.11), these routines are not structure-based-specific.

That is, these are general routines for calculating bond, angle, dihedral, contacts,

excluded volume and electrostatic energies/forces. Similar to how SMOG models

are implemented in Gromacs, the input force field file (SBM.INP) encodes the

structure-based aspects of the model. Thus, one may define a SBM.INP file that

has many non-structure-based features (e.g. non-specific contacts and electrostat-

ics), even though the “SB” routines would be used.

2. The SB routines in OPTIM apply switching functions to non-bonded terms. The

switching range (r0 to rc) is defined on the third line of SBM.INP. The switching

function is defined as a fourth-order polynomial, which ensures the force continu-

ously reaches zero at rc.

3. In Gromacs, one may exclude all non-bonded interaction that are connected by less

than a specific number (nrexcl) of bonds. In OPTIM, exclusions are automatically

generated for all atoms that interact via a bond, bond angle, dihedral, or contact.

nrexcl is not used.

To convert the .gro and .top files into an odata and SBM.INP file, which is necessary for

OPTIM/PATHSAMPLE, use the smog optim module (described in section ??). This

tool may be found in the $SMOG PATH/bin directory. The script is interactive, and you

will be prompted for all necessary input and options. Once you have organized your

force field for DPS, you will need to perform energy minimization for your structure.

By default, the odata file generated by smog optim will provide the keywords for min-

imization. The odata file contains the initial coordinates, as well as the calculation

specifications. The odata file should look like the following:

1 STEPS 1000000

2 BFGSMIN 0.000001

3 POINTS

4 SB 13.67 48.35 -15.2

http://www-wales.ch.cam.ac.uk/OPTIM/
http://www-wales.ch.cam.ac.uk/PATHSAMPLE/
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5 SB 12.16 51.69 -14.1

6 SB 10.07 51.44 -10.94

7 SB 6.78 53.35 -10.85

8 SB 4.22 53.53 -8.01

9 SB 0.53 53.56 -8.78

10 ...

Listing 4.11: Header of an example odata file generated by smog optim

If you selected rigidification when using smog optim, then there will be the additional

keyword RIGIDINIT in the odata file. In addition to the odata file, smog optim will also

generate the file SBM.INP, which defines the SMOG force field.

After energy minimizing two structures, you will want to find a connection between

them. To find an initial connection, you need to update the odata file, such that it

starts with:

1 NEWCONNECT 200 20 1.0 50.0 20 2.0 0.025

2 MAXERISE 1.0D-4 1.0D0

3 NOPOINTS

4 USEDIAG 2

5 NEWNEB 15 100 0.025

6 NEBK 500

7 DIJKSTRA

8 MAXBFGS 0.4 2.0

9 EDIFFTOL 0.000005

10 DUMPALLPATHS

11 PATH 100 0.001

12 MAXSTEP 0.05

13 MAXMAX 1.25

14 TRAD 0.2

15 BFGSTS 500 3 20 0.001

16 NOHESS

17 ENDNUMHESS

18 BFGSMIN 0.000005

19 PUSHOFF 0.1

20 STEPS 20000

21 BFGSSTEPS 1000000

22 UPDATES 200

23 POINTS

24 SB ...

Listing 4.12: Example odata file specifying a double-ended search.

In this case, the coordinates in the odata file should correspond to the coordinates of one

of the minimized endpoints. The coordinates of the second endpoint should be provided

in a file called finish. finish should simply be a listing of XYZ coordinates (no “SB”

at the beginning of each line). These steps are sufficient to get one started with DPS

using models generated by SMOG 2. Note: Since SMOG models are so computationally

inexpensive, compared to other models, I/O can sometimes become limiting when using
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OPTIM. It is advisable that you check the summary statistics at the end of each use of

OPTIM and verify that roughly 90 percent of time is spent on energy+gradient calls.



Chapter 5

SMOG Tools

In addition to applying standard structure-based models, there is often a need to intro-

duce additional system-specific modifications to the force field. To help users implement

some less-than-trivial tasks, we provide a variety of additional scripts for force field and

system modification. If $SMOG PATH/bin is in your PATH, then the smog tools should

already be available on your machine.

5.1 smog adjustPDB

This script helps rename atoms and residues in a PDB file, such that they will conform

to the naming scheme used in a set of template files. To see all options, use the -h flag,

or refer to Table 5.1.

The only required flag is the input PDB file name. You may optionally also explicitly

indicate which mapping file to use with -map. If you do not give the -map flag, then you

will be prompted to select which force field you would like to use. The available force

fields will be determined by your local force field library. For instructions on how to set

up your own custom library, see Sec. 3.2.1.

map file format Starting with SMOG v2.3, the default behavior of smog adjustPDB

has changed. Previously, only terminal residues were renamed. Starting with v2.3, the

following changes have been introduced:

• An exact matching protocol is now used to determine mapped residue names.

• Support was added for alternate atomic naming conventions (e.g. C3* or C3’).

29
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• One can now ignore (not rename) specific residue names, regardless of the atomic

composition.

Currently, there are 4 types of lines that can appear in the mapping file:

• comment lines: A semicolon can be used to denote a comment. If there are only

white spaces before a comment, then the line will be ignored.

• rename: This is used to globally rename a specific atom. For example, one may

want to use the prime convention, or asterisk convention. As another example, if

you wanted to rename all CA atoms as CAA, then you would give the line:

rename CA CAA

The convention is to begin with rename (not case-sensitive), followed by the atom

name that may appear in the PDB and then the desired atom name (i.e. the name

used in the force field).

• ignoreres: Sometimes one does not want to rename specific residues. Example:

If one wanted to not rename PSU residues, nor its atom names, then the following

line would be added:

ignoreRes PSU

• residue definitions: To define the composition of a residue, start with residue,

followed by the target residue name and then list all atoms that should appear

(i.e. are defined in the associated force field). For example, one could define ALA

in the following way:

residue ALA C CA CB N O

Based on this, any residue that has (only) a C, CA, CB, N and O would be renamed

ALA.

Note that the rename option is applied before matching the composition to a

residue. So, if you had a rename definition that converted CF to CA (rename CF

CA), then you would also match ALA if the residue has C, CF, CB, N and O. In

this example, C CA CB N O or C CF CB N O would both match ALA. The output

PDB file would reassign the CF atom to be CA.

There is a second strategy to allow for multiple types of atom sets to correspond

to the same target residue. For example, one may encounter a PDB file that uses

O2 to refer to OXT. SMOG 2 could enable both atom names in a single residue

definition via:

residue ALAT C CA CB N O (OXT O2)
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This would recognize C CA CB N O OXT or C CA CB N O O2 as ALAT. Since OXT

is listed before O2, the output PDB file would call the atom OXT.

A final option with the residue definition line is the use of %first or %last. These

tags indicate that, in addition to matching the atoms, the corresponding residue

name will only be substituted if the residue is the first/last residue in a chain.

This may occur if, for example, one is assigning charges to RNA residues. Since

the terminal residues may have the same atoms, but different charges, then one

may need to assign a different name for the terminal position. Note: If the chain

is a single residue, any definition with %first or %last is not considered when

matching the atoms.

To see the current default format, check out the file share/mapfiles/sbmMapExact.

1 ;This is a mapping file that was generated by smog2

2 ;This defines the composition of atoms in the templates found in:

3 ; /Users/coolsim/smogtemplates

4 rename OP1 O1P

5 rename O3’ O3*

6 residue A C1* C2 C2* C3* C4 C4* C5 C5* C6 C8 N1 N3 N6 N7 N9 O1P O2* O2P O3* O4* O5* P

7 residue ALAT C CA CB N (O O1) (OXT O2)

8 residue A C1* C2 C2* C3* C4 C4* C5 C5* C6 C8 N1 N3 N6 N7 N9 O1P O2* O2P O3* O4* O5* P

9 residue A3P C1* C2 C2* C3* C4 C4* C5 C5* C6 C8 N1 N3 N6 N7 N9 O1P O2* O2P O3* O4* O5* P \%last

10 ....

Listing 5.1: example mapping file format

Generating the mapping file: While one can make the mapping file by hand, SMOG 2

can also generate a mapping file that defines all of the residues in a given force field.

To generate a minimal mapping file for a given .bif file, use the gen map option with

smog adjustPDB. Note: This will only generate the residue definitions, listing the exact

atom names defined in the force field (i.e. rename, ignoreres and () will not generated).

If a residue has a “meta” attribute defined in the .bif file, then its value will be included

at the end of the atom names with a “%”. For example, if you have a “last” definition,

then meta=‘‘last’’ in the residue definition in the .bif file would lead to “%last” being

included in the residue definition of the SMOG-generated mapping file.

Legacy map file format (not recommended) When using the -legacy option, the

following format should be used for the map file: Lines containing a “#” character are

interpreted as comments. Each line must have three strings that are space/tab delimited.

The first field is the residue name, as it appears in the input PDB file. The second is the

name to be substituted if the residue is the first residue in a chain (e.g. N-terminus in a

protein), and the third field is the corresponding substitution for the last residue (e.g. C-

terminus) in each chain. The preprocessing tool will write a modified PDB file smog.pdb.
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Option Usage Default value

Required

-i <string> input PDB file name none

Optional

-map <string> user-defined mapping file name N/A

-legacy use non-matching routines N/A

-removeH strip PDB of any atoms beginning
with “H”

N/A

-noautorename do not automatically replace * and
’ characters in atom names

N/A

-removewater strip PDB of any residues named
“HOH” or “WAT”

N/A

-altLocs If alternate locators are found, only
keep the first entry for each atom

N/A

-insertTER interactively insert TER lines be-
tween non-consecutive residue num-
bers

N/A

-large use base-N (N>10) numbering for
residues and atoms

N/A

-sort reorder atoms in each residue alpha-
betically by name

N/A

-PDBresnum keep original PDB residue number-
ing

N/A

-renumber automatically renumber all non-
consecutive residues

N/A

-subALA rename a residue as ALA if it con-
tains only C, CA, N, C and CB

N/A

-gen map <string> read a template and generate the
corresponding mapping file (rarely
needed). output name is arg.

N/A

-t <string> templates to read, when using
gen map flag

N/A

-o <string> output PDB file name adjusted.pdb

-warn [N] convert N errors to warnings 0

-help show options

Table 5.1: Flags supported by smog adjustPDB

The script can also renumber atom and residue indices to be sequential within each

chain, and it adjusts atom names to be consistent with the SBM AA template files.

5.2 smog editgro

This tool is only useful if you are using OpenSMOG. If you are using Gromacs, the same

functionality is available through the editconf tool. smog editgro is used to customize
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Option Usage Default value

-g <string> input .gro file smog.gro

-og <string> output .gro file smog.box.gro

-boxtype <string> Type of box to create: cubic, rect-
angular, dodecahedron, octahedron

N/A

-d minimum distance between system
and box edges

0

-c center the system in the box

-pbc impose periodic boundary condi-
tions on the coordinates. Note: if
-c is used, then PBCs are applied
after centering.

-help show options

Table 5.2: Flags supported by smog editgro

the simulated box and initial coordinates. To see all options, use the -h flag, or refer to

Table 5.2.

5.3 smog extract

It is common when studying large molecular assemblies that you will only want to

simulate a portion of the system. In these cases, it is often convenient to remove many

atoms from the model, and then apply position restraints on the boundary atoms [12].

To facilitate this, smog extract will take a SMOG .top and .gro file (.xml file, if using

OpenSMOG), and produce a new set of force field files that only include a specified

subset of atoms. The atom list can be given in a Gromacs-style .ndx file. If multiple

groups are listed in the ndx file, the user will be prompted to select a single group.

By default, position restraints are not introduced. If you would like to include position

restraints on all atoms that have an interaction removed during extraction, then use the

-restraints flag to indicate the strength of the restraints. To see all options, use the

-h flag, or refer to Table 5.3.

5.4 smog ions

This module allows one to add ions to your model. There are multiple ways in which

the definitions used for the ions can be indicated by the user. In all approaches, vdW

parameters, mass, charge and names must all be specified. The ions will be place around

the existing atoms without introducing atomic clashes.
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Option Usage Default value

-f <string> input .top file smog.top

-g <string> input .gro file smog.gro

-n <string> index file for group definitions smog.ndx

-of <string> output .top file extracted.top

-og <string> output .gro file extracted.gro

-openSMOG <xml

file>

process an openSMOG xml file gen-
erated by smog2

none

-openSMOGout <xml

file>

output file name for processed
openSMOG xml file

none

-om <string> mapping between orig. and new sys-
tem

atomindex.map

-orm <string> mapping between orig. and new sys-
tem for restrained atoms

restrained.map

-restraints <float> turns on restraints on boundary
atoms

N/A

-ndxorder preserve atom ordering given in the
ndx file, rather than in the top.

N/A

-warn [N] convert first N errors to warnings 0

-nogro only convert a top file N/A

-help show options

Table 5.3: Flags supported by smog extract

There are three ways to specify the parameters of ions that one wants to add:

• Specify the force field that you want to use with the -t option. You must supply

a template directory. Within the directory, you must have an “ions.def” file (see

Sec. 6.2.6). The template directory may also contain an extras file (see Sec. 6.2.5).

• Specify the parameters of the new ions on the command line (not recommended).

• If you do not specify the parameters or templates, then you will be prompted to

interactively select a force field. Note that this functionality only works if you have

set up a local SMOG 2 force field library with force fields that define ions. For

information on force field libraries, see Sec. 3.2.1.

For a full list of supported flags, see Table 5.4.

5.5 smog modifyXML

This tool uses an OpenSMOG XML file, along with an index file to generate a new

OpenSMOG XML file in which contact and/or dihedral parameters are modified. The
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Option Usage Default value

-f <string> input .top file smog.top

-g <string> input .gro file smog.gro

-OpenSMOG <string> input .xml N/A

-of <string> output .top file smog.ions.top

-og <string> output .gro file smog.ions.gro

-OpenSMOGout

<string>

output .xml N/A

-ionnm <string> name of the ion to be added

-ionn <integer> number of ions to add

-ionq <float> charge of ions

-ionm <float> mass of ions none

-ionC12 <float> non-bonded C12 parameter for ions

-ionC6 <float> non-bonded C6 parameter for ions 0.0

-mindist <float> minimum distance an ion may be
placed to any other atom

0.5 nm

-t <string> template directory for reading ion
parameters

none

-warn [N] convert first N errors to warnings 0

-help show options

Table 5.4: Flags supported by smog ions

script can be used interactively, or through command-line arguments. One may apply

an arbitrary number of modifications to an arbitrary number/set of parameters. The

specific interactions that will be rescaled are determined by the index file and user input

at runtime. If you specify that dihedrals will be modified, you will be prompted to

select an index group for rescaling. If the atoms forming the middle bond are within

the index group, then the indicated parameters will be modified. If one is modifying

contacts, then the user will need to select two index groups. Any contacts between

the two groups will be modified. If the same group is selected twice, then intra-group

contacts will be modified. Table 5.5 describes the available options.

5.6 smog scale-energies

This tool uses a SMOG .top and .gro file, along with an index file to generate a SMOG

model in which contacts and/or dihedrals weights are modified. This is a common

task when using SMOG models, and we provide this script as a convenience. On the

command line, you must indicate whether you want to rescale dihedrals (-rd <float>)

or contacts (-rc <float>). A value of 0 indicates the interaction should be deleted from

the model. The specific interactions that will be rescaled are determined by the index

file and user input at runtime. That is, if you specify that dihedrals will be rescaled,
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Option Usage Default value

-OpenSMOG <string> input .xml file OpenSMOG.xml

-OpenSMOGout

<string>

output .xml file OpenSMOG.out.xml

-n <string> index file smog.ndx

-inter <string> type of interactions to modify (con-
tacts, or dihedrals)

-type <string> which set of interactions should be
modified (as named in XML file)

-grp1 <string> name of first group of atoms (as
named in .ndx file)

-grp2 <string> name of second group of atoms (only
for use with contacts)

-param <string> which parameter should be modified

-modby <string> expression for modifying parameter.
Format: [+-*/]<number>

-remove remove the matching interactions,
instead of adjusting them

-warn <int> convert first N errors to warnings 0

-help show options

Table 5.5: Flags supported by smog modifyXML

Option Usage Default value

-f <string> input .top file smog.top

-n <string> index file smog.ndx

-of <string> output .top file smog.rescaled.top

-rc <float> rescale contact weights by factor 1.0

-rd <float> rescale dihedrals weights by factor 1.0

-help show options

Table 5.6: Flags supported by smog scale-energies

you will be prompted to select an index group for rescaling. If all four atoms that form

a dihedral are within the index group, then the weight is rescaled. Only dihedrals of

type 1 are rescaled. If one is rescaling contacts, then the users will need to select two

index groups. Any contacts between the two groups will be rescaled. If the same group

is selected twice, then intra-group contacts will be rescaled. Table 5.6 describes the

available options.
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Option Usage Default value

Optional

-N <integer> exponent of attractive non-bonded
interaction

6

-M <integer> exponent of repulsive non-bonded
interaction

12

-ic <float> total monovalent ion concentration
(Molar) for DH interaction

0

-temp <float> simulation temperature correspond-
ing to room temperature (Gromacs
units)

300

-units <float> units to be used in the simulation
(kCal or kJ)

kCal

-sd <float> distance (nm) to start switching
function for electrostatics

1.0

-sc <float> distance (nm) at which switching
function enforces elec. interactions
go to zero

1.5

-tl <float> length (nm) of table 5

-table <string> output table file name table.xvg

-help show options N/A

Table 5.7: Flags supported by smog tablegen

5.7 smog tablegen

This is only to be used if you are running simulations in Gromacs. If you are

using OpenSMOG/OpenMM, then this tool cannot be used. When using user-

defined potentials (i.e. not 6-12, or direct Coulomb interactions), then it is necessary to

provide a table file that contains tabulated potentials and forces. Specifically, Gromacs

will consider any tabulated potential of the form:

U = qiqjf(rij)−Bg(rij) +Ah(rij) (5.1)

where A and B are defined in the .top file, and qi is the charge of atom i. The functions

f(rij), f
′(rij), g(rij), g

′(rij), h(rij), h
′(rij) are given by the table file.

smog tablegen will generate a table file with specific parameters, where h(rij) = 1
rMij

,

g(rij) = 1
rNij

and f(rij) =
exp(−κrij)

rij
. κ is the Debye length, and it is equal to 3.2

√
[C]nm−1,

where [C] is the concentration of monovalent ions (Molar) to be described implicitly by

a Debye-Hückel potential. [C] should be the sum of all monovalent ion concentrations,

regardless of electric charge. Table 5.7 describes the available options.
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5.8 SCM.jar

This section describes a Java application SCM.jar that computes the “Shadow” map,

a general contact definition for capturing the dynamics of biomolecular folding and

function. It is described in the literature here [13]. A contact map is a binary symmetric

matrix that encodes which atom pairs are given attractive interactions in the SBM

potential. In the context of a SBM, the native contact map should approximate the

distribution of stabilizing enthalpy in the native state that is provided by short range

interactions like van der Waals forces, hydrogen bonding, and salt bridges. Any long

range interactions or nonlocal effects are taken into account in a mean field way through

the native bias.

Figure 5.1: The Shadow contact map screening geometry. Only atoms within the
cutoff distance C are considered. Atoms 1 and 2 are in contact because they are within
C and have no intervening atom. To check if atoms 1 and 3 are in contact, one checks
if atom 2 shadows atom 1 from atom 3. The three atoms are viewed in the plane, and
all atoms are given the same shadowing radius S. Since a light shining from the center
of atom 1 causes a shadow to be cast on atom 3, atoms 1 and 3 are not in contact. See

Section 5.8.1.

Role of SCM.jar in SMOG 2

Internally SMOG 2 uses SCM.jar to compute contact maps. From the user’s point of

view the contact map can be of two types, all-atom or coarse-grained. An all-atom map

returns the atoms that are in contact based on the Shadow definition. A coarse-grained

map (e.g. to be used with the Cα model) is created from an all-atom map. The coarse-

grained map consists of residue-level contacts. A residue-level contact exists if there is

at least one atom-atom contact between two residues. This is why a PDB containing

all heavy atoms is required by the tool. When coarse-graining SMOG 2 asks that the

user provide an all-atom template in addition to the coarse-graining template that tells
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SMOG 2 how to interpret the all-atom PDB in order to interface with SCM.jar. The

actual command within the code is:

java $memoryMax -jar $ENV{SMOG_PATH}/src/tools/SCM.jar -g $groFile4SCM

-ndec 4 -t $topFile -o $shadowFile -ch $ndxFile $SCMparams

The additional $SCMparams are set in the subroutine setContactParams(). This sub-

routine reads the attributes in the Contact tag of the .sif template file. The standalone

tool is available within the SMOG 2 tools directory for users that want to create their

own customized maps (also the source code is there). The rest of the chapter describes

the basics of using the tool.

Locating SCM.jar: The jar should be located in $SMOG PATH/src/tools.

Citing SCM.jar: The citation for SCM.jar is [13].

Running SCM.jar

Like any java application, no compilation is necessary, but a virtual machine is required;

SCM.jar requires a sufficiently recent JRE. SCM.jar reads SMOG formatted Gromacs

input files. Important! The all (heavy) atom geometry must be used, even

if the output will be a coarse-grained residue-based map for a Cα model. The atomic

coordinates are read in .gro format and the bond connectivity is read via a .top ob-

tained from the SMOG webtool (or source distribution). The topology is required since

bonded atoms shadow each other differently and since contacts are automatically dis-

carded between two atoms if they share a bonded interaction (bond, angle, dihedral).

At the command line, the basic syntax is

user$ java [-Xmx1000m] -jar SCM.jar -g grofile -t topfile -o outputName \

[--chain chainFile] [--default | -m {shadow,cutoff}]

-Xmx1000m assigns 1000 MB of RAM to the Java virtual machine heap. With large

complexes (>1e5 atoms) the default heap allocation can run out which gives the following

error:

java.lang.OutOfMemoryError: Java heap space

The output all-atom contact file format is

chain_i atom_i chain_j atom_j [distance]
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and similarly, the output residue contact file format is

chain_i residue_i chain_j residue_j [distance]

Some examples

• Shadow map, atomic contacts, shadowing radius 1 Å and cutoff 6 Å (default sizes).

See Figure 5.1 for definition of radius and cutoff. Add --chain if you have multiple

chains, since the .gro format does not allow for chain information. Specify the

chains file you get from your SMOG output.

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

--default [--chain chainsFile]

• Same as above, but including the correction such that the algorithm exactly follows

the description in Figure 5.1 (see Section 5.8.1).

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

--default [--chain chainsFile] --correctedShadow

• Shadow map, atomic contacts, shadowing radius 2 Å and cutoff 4 Å.

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

-m shadow -c 4 -s 2 [--chain chainsFile]

• Cutoff map, atomic contacts, and cutoff 4 Å.

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

-m cutoff -c 4 [--chain chainsFile]

- OR -

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

-s shadow -s 0 -c 4 [--chain chainsFile]

• Shadow map, residue contacts, default, include contact distances

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

--distances --coarse CA [--chain chainsFile]
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• To calculate over a trajectory instead of a single structure, use --multiple X,

where X is the number of frames in the trajectory .gro file. Assumes that the

format of proteinTraj.gro is the same as the output of trjconv. This saves

time relative to looping over many grofiles because the topology (and therefore

the bonded list) is only read once.

user$ $GROMACS/trjconv -f traj.xtc -o proteinTraj.gro

user$ java -jar SCM.jar -g proteinTraj.gro -t protein.top -o contactMapsOut

--default --multiple 1000 [--chain chainsFile]

Some details of coarse-graining

The coarse-grained contact map returned is only strictly recommended for use with

Cα models of proteins, and where the input PDB has an all-atom representation. For

various modeling applications, it is desirable that the program not die with an error if

the PDB doesn’t only contain all-atom protein with each residue containing a CA atom.

Therefore, the behavior is that the program will choose one atom from each residue to

stand in as the representative coarse-grained position. It chooses, in order of preference:

CA, N1, first atom in the residue. This really only matters for the --distance option.

Full configuration parameter list

The following will give a full list of configuration options:

user$ java -jar SCM.jar -help

Running SCM.jar through the webtool

On the webserver (http://smog-server.org/Shadow.html) one can build a shadow map

from a SMOG formatted PDB file.

5.8.1 Corrected algorithm

From the beginning, SCM.jar has had a bug where asin was replaced by atan in the

code calculating the tangents to the spheres (see Figure 5.1). This went undetected

since the error is small when the distances between atoms is larger than the shadowing

size, roughly 3% error in the angle for a shadowing atom 4 Å away. This works out

to allow slightly more contacts. The option --correctedShadow (introduced in v2.3)
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implements the exact algorithm of Figure 5.1, whereas SCM.jar without that switch

continues to use the “buggy” form.

If the user wishes to use --correctedShadow, but wants to create maps as close to the

“buggy” maps as possible, a good rule of thumb is to use a slightly smaller shadow

size. For example, using --correctedShadow -m shadow -s 0.975 -c 6 for the CI2

protein (1YPA.pdb), gives the same number of contacts (599) with 99.5% of the contacts

identical.

5.9 WHAM.jar

This section only provides a small subset of WHAM.jar capabilities, where

many (e.g. umbrella potential analysis, etc) are not described. We are work-

ing on organizing usage examples, and we hope to update this description

soon. Until then, please reach out if you have questions.

The Java application WHAM.jar at its heart uses a well established algorithm described

here [14]. WHAM.jar is tailored for the sort of analysis that is most often performed on

SBMs, including free energy perturbation, thermal averaging of reaction coordinates and

free energy as a function of (1 or 2) reaction coordinates. The basic operation involves

providing WHAM.jar with a set of histograms from constant temperature simulations,

which can vary in both temperatures and umbrella parameters, and a configuration file.

Based on the options set in the configuration file (or at the command line) WHAM.jar

will perform the appropriate analysis. The WHAM algorithm itself [14] provides an

optimal density of states (Ω). From Ω many thermodynamic quantities of interest can

be calculated.

Some powerful features of WHAM.jar are worth mentioning. As the system size grows,

the energy grows, and this can lead to overflow of double precision floating point num-

bers (11 bit exponent, 211 ≈ 1000) when exponentiating the energy. WHAM.jar uses a

32 bit exponent, allowing energies up to 109. The efficiency of SMOG models can allow

for multiple umbrella potentials to be simultaneously employed and sufficiently sam-

pled. WHAM.jar can reweight arbitrarily many umbrellas. However, note that the code

currently only allows for the umbrella energy to be quadratic along the umbrella coordi-

nate (but this can be easily changed). As more dimensions are added to the histogram,

i.e. multiple reaction coordinates and umbrella coordinates, the time and memory re-

quirements dramatically increase. WHAM.jar uses a sparse array data structure, which

eliminates memory issues and allows arbitrary histogram bounds and steps to be used.
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Additionally, Java Threads are used. Set threads <int> in the configuration file to

make use of multiple cores.

Running WHAM.jar

Like any java application, no compilation is necessary, but a virtual machine is required;

WHAM.jar requires JRE 1.6.0 29 or greater. At the command line, the basic syntax is

user$ java [-Xmx100m] -jar WHAM.jar --config configurationFile

-Xmx100m assigns 100 MB of RAM to the Java virtual machine heap. With large his-

tograms (4 or 5 dimensions) the default heap allocation can run out which gives the

following error:

java.lang.OutOfMemoryError: Java heap space

The error handling is often not very user friendly, so make sure to look at the formatting

of examples if you are running into Java exceptions during runtime.

5.9.1 Configuration file

5.9.1.1 Example 1: Combining constant temperature runs

Find the example files at $SMOG DIR/examples/whamExamples/1. This example intro-

duces the basic use of WHAM.jar by reading histograms from 3 constant temperature

runs (T=144.2,144.3,144.4), running WHAM, and outputting a specific heat (Cv dia-

gram) and a free energy with respect to a reaction coordinate Q. Here, Q is the number

of native contacts formed.

Each trajectory (i.e. thermodynamic state) gets its own file. The histogramming is

controlled by the user. Reducing the number of bins speeds up the calculation, but

reduces resolution of the output. Too many bins will result in a lack of data per bin and

noise will dominate.

--------- start config file -------------------

kB 0.008314 # Boltzmann constant

tolerance .001 # when convergence is reached

overwriting # WHAM.jar is allowed to overwrite

# existing files
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threads 1 # increase to utilize multiple cores

##### define internal histograming #####

numDimensions 2 # space delimited file, two columns: Potential_energy and Q

# energy

numBins 144

start -88

step 2

# Q

numBins 100

start 0

step 2

##### trajectory files (each with 2 columns: Potential_energy and Q)

numFiles 3

name data/hist.144.2.in temp 144.2 # temp specifies the temperature of

# this trajectory

name data/hist.144.3.in temp 144.3

name data/hist.144.4.in temp 144.4

• The Boltzmann constant (kB) relates the energy units used in the histogram files

to the temperature units given with temp. The value shown here is appropriate

for Gromacs and SMOG, where the temperature is the Gromacs temperature in

Kelvin.

• The histogram files are designated with relative paths with respect to the directory

where WHAM.jar is launched. Histogram files are space delimited columns with

the following format:

energy reaction_coord_1 [ more reaction coords ] [ umbrella coords ]

• The total span of the histogram is from start to start+numBins*step.

• overwriting is used in the example so that it doesn’t die while running due to the

prior existence of output files. One can remove this parameter in order to ensure

that WHAM.jar doesn’t overwrite some previous analysis.

To run WHAM add the following to the config file:

run_wham # tells the program to compute density of states

dosFile dos # filename for density of states output
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Only the histogram bins that have at least one data point are written. The density

of states histogram columns are in the same order as the input with an additional

column that is the density at the indicated bin. After the program computes the density

of states (written to dos), there are routines that perform various integrals to obtain

thermodynamic information.

For instance, to calculate the specific heat add the following to the config file:

run_cv # tells the program to compute specific head from dos

### run_cv parameters

startT 135 # start temp

deltaT 0.1 # print every 0.1 degree

ntemps 200 # for a total of 200 prints

run_cv_out cv # name of cv outputfile

• There will be one output file with five columns:

temperature Cv enthalpy free_energy entropy

• Cv(T ) = 〈E2〉 − 〈E〉2

To compute F (Q1), S(Q1), E(Q1) at T from Ω(E,Q1) or F (Q1, Q2), S(Q1, Q2), E(Q1, Q2)

from Ω(E,Q1, Q2) add the following to the config file:

run_free #tells the program to compute free energies

startTF 135 # start temp

deltaTF 1 # print every 1 degree

ntempsF 20 # for a total of 20 prints

run_free_out free/ # filename is ${run_free_out}${temp x 10}

#NOTE any output file can have directory structure

• Since the first column is always energy, the program knows the second column is

the reaction coordinate.

• There will ntempsF files with four columns:

reaction_coord_value free_energy enthalpy entropy

• F (Q1) = −kT ln ΣEΩ(E,Q1) exp(−E/kT )

• E(Q1) = ΣEEΩ(E,Q1) exp(−E/kT )
ΣE,Q1

Ω(E,Q1) exp(−E/kT )
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• TS(Q1) = F (Q1)− E(Q1)

• If two reaction coordinates are given (i.e. numDimensions = 3), run free assumes

you want two dimension free energies, i.e. F (Q1, Q2). Remember to add another

histogram descriptor to the config file:

# Q2

numBins 100

start 0

step 2

To compute 〈Q1(T )〉 from Ω(E,Q1) or 〈Q1(Q2)〉 at T from Ω(E,Q1, Q2) add the fol-

lowing to the config file:

run_coord #tells the program to compute coordinate averages

startTC 135 # start temp

deltaTC 1 # print every 1 degree

ntempsC 20 # for a total of 20 prints

run_coord_out coord # filename

• Since the first column is always energy, the program knows the second column is

the reaction coordinate.

• There will be one output file with two columns:

temperature <Q(T)>

• 〈Q1(T )〉 = ΣEQ1Ω(E,Q1) exp(−E/kT )
ΣEΩ(E,Q1) exp(−E/kT )

• If two reaction coordinates are given (i.e. numDimensions = 3), run coord as-

sumes you want the expectation value of Q1 (second column) as a function of Q2

(third column), i.e. 〈Q1(Q2)〉. The temperature is taken as startTF. Remember

to add another histogram descriptor to the config file:

# Q2

numBins 100

start 0

step 2
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Template-Based Approach

6.1 Introduction to templates

SMOG 2 offers increased versatility over SMOG v1 by shifting to a template-based

approach for defining molecular structures. Each template allows for direct control of

the structure-based energy function, which may include (but is not limited to) multi-

resolution models and models that include non-specific interactions. The plug-and-play

nature of the templates has the additional advantage of force field portability and easy

sharing of user-created variations of structure-based potentials.

A single SMOG “template” is comprised of four required XML-formatted files, plus

two optional ASCII files. XML was adopted because of its standardized formatting,

ease of editability and readability, and there are widely available program modules to

generate and parse XML files. Furthermore, XML allows for schemas, a content format

restriction file, to which the template files must conform, which adds an additional layer

of error checking capabilities. This chapter assumes that the user knows the basics of

XML formatting. Users unfamiliar with XML formatting may want to check out the

W3schools’ website.

Table 6.1 summarizes the purpose of each template file. In Chapter 7, we show how to

add new residues to the template files for an all-atom structure-based model.

6.2 SMOG 2 Templates

As discussed in Chapter 3, if one is not using a default model, then the user must

provide a template folder as input when calling SMOG 2. The template folder contains

all files needed to define the rules for constructing a structure-based model. Within

47

http://www.w3schools.com/xml/xml_whatis.asp
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File Purpose

Biomolecular Information File (.bif) defines the structure of
biomolecules to be supported

Setting Information File (.sif) defines interaction function
declarations

Bond File (.b) defines bonded interactions
between atoms

Nonbond File (.nb) defines non-bonded interac-
tions between atoms

extras file (.extra file; optional) used to add static content to
force fields

ions file (.ions.def file; optional) used to by smog ions when
adding ions

Table 6.1: Descriptions of SMOG 2 template files

this directory, four files are mandatory (.sif, .bif, .b, .nb files), while three are optional

(extras, ions.def and citation file). A template folder can only contain one of each file

type. If your template folder contains more than one file of a specific file type, the

program will exit with an error. Each file contains unique information, as described

below.

6.2.1 Biomolecular Information File (.bif)

The Biomolecular Information File (from here on called .bif) defines the covalent struc-

ture of all residues described by a particular force field. Each residue is defined in the

.bif file by declaring all the atoms in that residue, the bonds between the atoms and the

improper dihedrals between the atoms.

6.2.1.1 Residues

Each residue is individually defined between the <residues> and </residues> tags. As

an example, the text below shows how one would define the residue ALA, which contains

5 atoms.

1 <residue name="ALA" residueType="amino" atomCount="5">

2 <atoms>

3 <atom bType="B_1" nbType="NB_1" pairType="P_1">N</atom>

4 <atom bType="B_1" nbType="NB_1" pairType="P_1">CA</atom>

5 <atom bType="B_1" nbType="NB_1" pairType="P_1">C</atom>

6 <atom bType="B_1" nbType="NB_1" pairType="P_1" charge="-1.0">O</atom>

7 <atom bType="B_1" nbType="NB_1" pairType="P_1">CB</atom>

8 </atoms>

9 <bonds>
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10 <!--BACKBONE-->

11 <bond energyGroup="bb_a">

12 <atom>N</atom>

13 <atom>CA</atom>

14 </bond>

15 <bond energyGroup="bb_a">

16 <atom>CA</atom>

17 <atom>C</atom>

18 </bond>

19 <bond energyGroup="bb_a">

20 <atom>C</atom>

21 <atom>O</atom>

22 </bond>

23 <!--FUNCTIONAL GROUP-->

24 <bond energyGroup="sc_a">

25 <atom>CA</atom>

26 <atom>CB</atom>

27 </bond>

28 </bonds>

29 <impropers>

30 <improper>

31 <atom>CB</atom>

32 <atom>CA</atom>

33 <atom>C</atom>

34 <atom>N</atom>

35 </improper>

36 </impropers>

37 </residue>

Listing 6.1: Residue section of .bif file

The attribute name is the name of the residue, as used in your PDB file. The attribute

residue residueType is the type of residue, in this case, an amino acid residue. Finally the

optional attribute atomCount allows the user to explicitly set the total number of atoms

to be counted for normalizing energies. That is, the total atom count is used in the

energetic scaling procedure of dihedrals and contact energies, as described in Appendix

A. This feature is useful when including many copies of a ligand in your system, since

the energetic normalization should only be based on the protein, or RNA, and not the

multiply-copied ligands. In such a scenario, the user would set atomCount to 0. If

atomCount is not defined, SMOG 2 automatically uses the total number of atoms listed

under the <atoms> tag.

The <atoms> tag declares all the atoms in the residue. Note that all the atoms within a

specific residue in your PDB must be listed here. If the PDB and .bif are not consistent,

the program will terminate with an error. This is the reason that the default templates

differentiate between the C-terminal and non-terminal protein residues (See Chapter 3).

Each atom has a bond type bType, a non-bond type nbType and a pair type pairType.

The bond type attribute is used in the generation of the bonded interactions (bonds,
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angles, and dihedrals). Likewise, the non-bond type attribute is used in the generation

of the non-bonded interactions. The pairType attribute is used in the generation of

contact interactions (6-12, 10-12 or Gaussian interactions). In the example above, we

also show the optional charge attribute, which allows the user to specify the charge of

an atom within a residue. Using charge within an atom declaration will supersede any

charge assignment based on nbType (see below).

The <bonds> tag contains all the bonds that should be present in the residue. Each bond

in a residue is listed under the <bond> tag. The atom names must match those listed in

the <atoms> field. The bond tag also has an attribute called energyGroup that allows

for one to define heterogeneous energetics in the system. The energy group attribute is

used in conjunction with the bond types to determine the dihedral interaction. Using

the bonds declared here, the program dynamically identifies and calculates all angles

and dihedrals that can be defined for the molecule.

The <impropers> tag contains all the improper dihedral angles in the biomolecule. The

tag <improper></improper> holds four atom tags. The order of the four atoms defines

a specific improper dihedral within a residue. This feature is used to add dihedrals that

cannot be determined based on bond geometry.

6.2.1.2 Connections

In addition to defining a residue, the .bif file is also used to define how sequential residues

are covalently connected. Listing 6.2.1.2 shows how two residues of type amino are

covalently linked. The attribute residueType1 and residueType2 declares how a residue

of type residueType1 at position n should be connected to a residue of type residueType2

at position n+1. The residue types are matched based on the residue definitions. Much

of the structure of the connection element is similar to that of the residue element. There

is a single bond, whereby the first atom belongs to the nth residue and the second atom

belongs to the (n+1)th residue. You can also define a single improper dihedral, though

this is not a requirement component of all connection definitions. In the context of

impropers, the special character suffix “+” is used to declare atoms that belong to the

(n+1)th residue. In listing 6.2, the N atom belongs to the (n+1)th residue.

Note: If you do not want to covalently link residues that are listed sequentially in the

PDB file, then you should add the attribute connect=no to the definition of the first

residue type within the residue declaration. This could be helpful if you are modeling

ions, where each ion is listed as a single residue, but a block of ions appear in the PDB

file between TER lines.
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1 <connections>

2 <!-- AMINO/AMINO -->

3 <connection name="amino-amino" residueType1="amino" residueType2="amino">

4 <bond energyGroup="r_a" >

5 <atom>C</atom>

6 <atom>N</atom>

7 </bond>

8

9 <improper>

10 <atom>O</atom>

11 <atom>CA</atom>

12 <atom>C</atom>

13 <atom>N+</atom>

14 </improper>

15 </connection>

16 </connections>

Listing 6.2: Connection section of .bif file

6.2.2 Setting Information File (.sif)

While the .bif file is used to define the covalent geometry of each residue, the Setting

Information File (.sif) is used to control the distribution and allowable functional forms

of the energetic terms, which includes the inter-dihedral dihedral ratios, contact-to-

dihedral ratios, contact map settings and function declarations.

6.2.2.1 Functions

The <functions> tag should list all the functions that the model will use.

1 <functions>

2 <function name="bond_harmonic" directive="bonds"/>

3 <function name="bond_type6" directive="bonds"/>

4 <function name="bond_bytype" directive="bonds"/>

5 <function name="angle_harmonic" directive="angles"/>

6 <function name="angle_free" directive="angles"/>

7 <function name="angle_bytype" directive="angles"/>

8 <function name="dihedral_cosine" directive="dihedrals"/>

9 <function name="dihedral_harmonic" directive="dihedrals"/>

10 <function name="dihedral_free" directive="dihedrals"/>

11 <function name="dihedral_bytype" directive="dihedrals"/>

12 <function name="contact_1" directive="pairs" exclusions="1"/>

13 <function name="contact_2" directive="pairs" exclusions="1"/>

14 <function name="contact_gaussian" directive="pairs" exclusions="1"/>

15 <function name="contact_free" directive="pairs" exclusions="0"/>

16 </functions>

Listing 6.3: Example of functions section of a .sif file
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All functions that will be used in the model should be listed under the <functions>

tag. These function names are mapped to specific subroutines in src/smogv2. While

functions available in Gromacs are static, the OpenSMOG option may be used to apply

user-defined potentials when using openMM. All supported interactions are listed in

Table 6.2.

The function tag has two attributes, directive and exclusions. directive takes

a string and specifies the topology directive under which to write out the interaction.

exclusions is boolean and specifies whether to write out the atom pair additionally

under the [ exclusions ] directive. In Gromacs this means that the atom pair is not

included in the non-specific excluded volume interaction list. This is because the pair

interaction has its own excluded volume part and it shouldn’t be double counted. Since

there can be interactions defined that do not include excluded volume, we include the

option for flexibility.
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6.2.2.2 Declaring a contact type

There are three ways to declare Lennard-Jones-style potentials for contacts (See Table

6.2): contact 1 and contact 2, as well as through a user-defined potential.

The form of the potential for contact 1 is:

Vcontact =
A

rM
− B

rN
(6.1)

A and B are automatically evaluated, such that the minimum is at distance σ and depth

ε. Distances are calculated based on the input PDB if “?” is given in the σ field.

The form of the potential for contact 2 is:

Vcontact = ε (f(σ)G(r)− g(σ)H(r)) (6.2)

f(σ) and g(σ) are expressions that are evaluated using the native distance if “?” is given

for σ. The functions G(r) and H(r) are typically provided to Gromacs via table files

(See Section 5.7).

6.2.2.3 Defining the contact map

For any given biomolecular structure, one needs to define a set of non-local interactions

that are stabilizing. These interactions are collectively called the “contact map”. The

definition of the contact map is probably the most important single element of any

SMOG model. Accordingly, SMOG 2 allows for a range of strategies to be employed.

One approach is for the user to provide their own map (see section 3.2.6). However, it

is more common that SMOG 2 is used to generate the contact map for you. This is

accomplished with the Contacts element in the sif file. Below are some examples for

how contact maps may be defined in SMOG 2.

The example below will tell SMOG 2 to use the Shadow Contact Map algorithm [13]

with a maximum contact distance of 6Å with a shadowing radius of 1Å for atoms that

are not bonded, and a radius of 0.5Å for atoms that are bonded.

1 <Contacts method="shadow" contactDistance="6" shadowRadius="1" shadowRadiusBonded="0.5"/>

Listing 6.4: Calculating a shadow map

This example would simply use a cutoff distance of 6 Å.

1 <Contacts method="cutoff" contactDistance="6"/>

Listing 6.5: Calculating a cutoff map
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It is also possible to tell SMOG 2 to rescale the weights of contacts between certain

types of atoms. For example:

1 <Contacts method="cutoff" contactDistance="4" >

2 <contactScaling name="stackingScale" residueType1="nucleic" residueType2="nucleic" scale="0.3"

3 deltaMin="1" deltaMax="1"

4 atomList="N1 N2 N3 N4 N5 N6 N7 N8 N9 C1 C2 C3 C4 C5 C6 C7 C8 C9 O1 O2 O3 O4 O5 O6 O7 O8 O9 S10

5 C11 C12 C13 C14 C15 C16"/>

6 </Contacts>

Listing 6.6: Calculating a cutoff map with rescaled interactions

In this example, a cutoff map would be calculated, but interactions between adjacent

residues (set by deltaMin and deltaMax) that are in the atomList group will be rescaled

by 0.3.

6.2.2.4 Group Settings

Structure-based models have two classes of energy groups: contact groups and dihedral

groups. Each contact group represents a collection of contacts, and each dihedral group

represents a collection of dihedrals. These energy groups are used for energetic scaling

of interaction strengths.

UAA = ... +
∑

backbone

εBBFD(φ) +
∑

sidechain

εSCFD(φ) (6.3)

+
∑

contacts

εCFcontacts(r) + ... (6.4)

Shown above are the dihedral and contact terms of the all-atom potential. Shown below

are the energetic scaling factors for dihedrals and contacts, and their respective attributes

under the .sif file.

εBB

εSC
=

intraRelativeStrength bb

intraRelativeStrength sc
(6.5)

∑
εBB +

∑
εSC +

∑
εC = total non-ligand atoms (6.6)

∑
εBB +

∑
εSC∑

εC
=

dihedrals groupRatio

contacts groupRatio
(6.7)
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The program automatically calculates the total number of atoms used in the energetic

scaling (ligands are excluded in the default models). Although the scaling equations

shown above are limited to residue types with only two dihedral types (backbone and

sidechain dihedrals) and a single contact type, the program allows for scaling equations

to be generalized to more than two dihedral types and more than one contact type. The

energy group ratios are contained within the <Groups> tag.

1 <energyGroup name="bb_n" residueType="nucleic" intraRelativeStrength="1" normalize="1"/>

2 <energyGroup name="sc_n" residueType="nucleic" intraRelativeStrength="1" normalize="1"/>

3 <energyGroup name="pr_n" residueType="nucleic" normalize="0"/>

4 <energyGroup name="ip_n" residueType="nucleic" normalize="0"/>

5 <energyGroup name="r_n" residueType="nucleic" normalize="0"/>

6 <contactGroup name="c" intraRelativeStrength="1" normalize="1"/>

7 <groupRatios contacts="2" dihedrals="1"/>

Listing 6.7: Energy group section of .sif file

The two classes of energy group ratios, dihedral and contact ratios, are determined by

the <energyGroup> and <contactGroup> tags respectively. The residueType attribute

is used to designate the residue type the scaling factors of a particular energy group is

used for. The name attribute is the label for the energy group. The name attribute

used here is matched to the energyGroup attribute under <bond> tag in the .bif file.

The name of a particular contact energy group will be used later when declaring contact

interaction functions in the subsequent section of this chapter.

The normalize attribute for each energy group is a boolean (1 or 0), and it is used to

determine if a particular energy group should be included in energy normalization (see

equation 6.6). For the all-atom model, the dihedral group with the name “pr n” (which

represents the nucleic planar rigid dihedrals) has a normalize option set to 0, indicating

that planar dihedrals in nucleic acids will not be part of the normalization. In contrast,

in the all-atom model, sidechain dihedrals are normalized, as are backbone dihedrals

and contact energies. Accordingly, those energy groups have the normalize option set to

1. The intraRelativeStrength attribute is the relative ratio of stabilizing energy within

the different class of energy group for a particular residue (equation 6.5).

Finally we use the <groupRatios> tag to set the energy partition between the two classes

of energy groups according to equation 6.7.

6.2.3 Bond File (.b)

The .b file is used to define all bonded parameters, which includes bonds, angles, and

dihedral.
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We first discuss how to define a basic bond interaction for the all-atom model.

1 <!-- BONDS -->

2 <bonds>

3 <bond func="bond_harmonic(?,10000)">

4 <bType>*</bType>

5 <bType>*</bType>

6 </bond>

7 <bond func="bond_type6(?,200)">

8 <bType>*</bType>

9 <bType>MG</bType>

10 </bond>

11 </bonds>

Listing 6.8: Bonds section of .b file

Recall that each atom is given a bType when they are declared in the .bif file. Given a

particular bonded interaction (bonds, angles, dihedrals, impropers), the functional form

for a bonded interaction is assigned by matching the combination of the bTypes in that

interaction. The first <bond> tag (line 3 in Listing 6.8) is used to assign a function

called bond harmonic to two bonded atoms of any type. Since the vanilla model has

only B 1 atoms, the *s could be replaced with B 1, and the same bonds would be

assigned. Recall under Listing 6.3, line 2, we defined bond harmonic() as a type 1

function under the bonds directive (harmonic bond function). The input parameters

for bond harmonic() are r0 and εbond. In this case we use the special character “?” to

tell SMOG to calculate the native bond length (r0) from the PDB structure file. You

can instead also give a specific value for the bond distance. This feature can be useful

when adding nonspecific/empirical terms (e.g. an AMBER/CHARMM backbone) to the

potential. However, the extras file may also be used to define non-specific parameters.

The bType attribute here can take either an exact bond type or a special wildcard “*”

character that matches to all available bTypes. For the case of the all-atom model, since

all the bType is identical, we can instead also defined the bond interaction as shown

under the <bond> tag in line 8 of Listing 6.8. Please note that the program will

assign the interaction that most closely matches the bTypes of a given atom

pair. One needs to be careful not to declare interactions that conflict with one another.

For example, if your system contains a bond between atoms of bType B 1 and B 2, and

bond definitions are only given for bTypes B 1-* and B 2-*, then SMOG would not know

which function to apply, and it will exit with an error. However, if one also explicitly

defines a bond function for B 1-B 2 pairs, that bond would take priority.
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The angle interaction follows a similar form as bonds, but instead of expecting two bType

attributes, it requires three. The bType attribute in this case is symmetric to the central

bType. When matching bond angles, the angle definition that matches the most atoms

identically will be used. Again, if an equal number of atoms match in multiple angle

definitions, there would be ambiguity, and SMOG will quit.

Declaring dihedral potentials is handled in a manner that is similar to bond and angles,

through there is one important difference. That is, in addition to matching the bTypes,

the central bond must have the same value for the energyGroup. As an example, we will

show the “dihedral cosine” function in listing 6.9, where this function is classified under

the dihedral directive with function type 1 in the .sif file (Listing 6.3). The arguments

for this function are of the form (φ0, εd,mult) (see Tab. 6.2). As introduced earlier, the

special character “?” tells SMOG 2 to calculate the native value from the PDB structure

file. In this example, we tell SMOG 2 to calculate the dihedral angle for all dihedral

interactions that involve the bType combination *-*-*-*, where the central two atoms

are connected by a bond with an energyGroup of “bb n”. By using the “?” argument,

along with a multiplicity factor (third argument), we tell the program to multiply all

the φ0 values by the multiplicity factor. More generally, one may provide any function

for the angle calculation. For example, if you were to use (?*2-1), the angle would be

evaluated as: native angle, times 2 and minus 1.

FD(φ) = (1− cos(φ− φ0)) + 0.5(1− cos(3(φ− φ0))) (6.8)

Equation 6.8 shown above is the dihedral interaction function used in the all-atom model.

The code Listing 6.9 shows how to assign FD(φ) to all dihedrals of energyGroup “bb n”

in a system.

1 <dihedral func="dihedral_cosine(?,1,1)+dihedral_cosine(?,0.5,3)" energyGroup="bb_n">

2 <bType>*</bType>

3 <bType>*</bType>

4 <bType>*</bType>

5 <bType>*</bType>

6 </dihedral>

Listing 6.9: Dihedral section of .b file

As shown in the example, multiple functions can be applied to the same dihedral angle

by including a sum of functions (e.g. func=“f(..)+g(..)+h(..)”). Currently, only sums

of functions may be given in the .b file. However, subtractions can be introduced by

assigning a negative weight to an interaction.
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The special keyword “?” has limitations in where it can be used. For bonds, angles,

and dihedrals it can only be used for the first input parameter to a function.

6.2.3.1 How SMOG matches dihedral parameters to specific dihedral angles

As with bonds and angles, it is quite easy to declare multiple bType sequences that will

match to the same atoms in a system. For example, if you define a dihedral function

for B 1-B 2-*-*, as well as B 1-*-*-* for the same energyGroup, then a dihedral in your

system between atoms (B 1,B 2,B 1,B 1) would match both, unless the central bond

was of a different energyGroup.

To determine which dihedral function should be applied to a given dihedral in your

system, a scoring function S is calculated for all dihedral definitions, and the highest-

scoring function is applied in your model. S is defined as 2 times the number of exactly

matching bTypes, plus the number of wildcard matches. If (at least) one of the atom

positions does not have an exact match, nor a wildcard in that position, then S = 0.

Also, if the energyGroup of the central bond in your structure is different from the

energyGroup of the dihedral declaration, then S = 0, which enforces that the bond and

dihedral are of the same energyGroup. The dihedral with the largest value of S is used.

If more than one dihedral has the same value of S, or if S = 0, an error is thrown.

In the example above, S = 6 for the first definition and S = 5 for the second. Ac-

cordingly, the B 1-B 2-*-* definition would take priority. If two dihedrals have equal S

values (ambiguous assignment), or S = 0 for all dihedral functions (i.e. no matches),

then the program will quit with an error.

6.2.4 Nonbond File (.nb)

The .nb file is used to define non-bonded interactions, including native contacts and

non-specific interactions.

1 <!-- DEFAULTS -->

2 <defaults gen-pairs="0" nbfunc="1" gmx-combination-rule="1" fudgeLJ="1" fudgeQQ="1"/>

3 <!-- GENERAL NONBONDS -->

4 <nonbond mass="1.00" charge="0.000" ptype="A" c6="0.0" c12="5.96046e-9">

5 <nbType>NB_1</nbType>

6 </nonbond>

7 <!-- CONTACTS -->

8 <contact func="contact_1(6,12,?,energynorm)" contactGroup="c">

9 <pairType>*</pairType>

10 <pairType>*</pairType>

11 </contact>

Listing 6.10: Contacts section of .nb file
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Listing 6.10 shows how to define non-bonded and native contact parameters. The nbType

value defined for each atom in the .bif is matched to the nonbond declaration.

Note: Unless you are using the -OpenSMOG option, the contacts will be written under

the [ pairs ] directive of the topology file. While this directive was originally intended

for use with 1-4 pair interactions, we have adopted it to include contacts in SMOG

models.

For structure-based models, a non-bonded interaction is a volume exclusion interaction

usually defined as the Lennard-Jones 6-12 term. This is specified with the nbfunc tag

in the defaults element in the .nb file. In addition, the parameters may be written

in the .top file using the c6-c12 convention (gmx-combination-rule=1), or ε − σ con-

vention (gmx-combination-rule=2). When using gmx-combination-rule=2, SMOG 2

will write values of σ in the atomtypes and pairs sections that preserve the intended

SMOG functional form (Eq. 6.1), even though Gromacs interprets σ in terms of a tradi-

tional LJ function (4ε
[(

σ
r

)12 −
(
σ
r

)6]
). Gromacs generates these interactions using the

information provided in the [ defaults ] and the [ atomtypes ] sections.

The non-bonded interaction declaration in SMOG 2 contains the atom attributes: mass,

charge and atom type, as well as the explicit c6 and c12 terms for the Lennard-Jones

function. If one wanted to include non-specific attractive interactions between atoms,

then a non-zero value should be given for the c6 parameter.

You can also define fudge factors for 1-4 LJ and 1-4 Coulomb terms. None of the defaults

are required to appear in the templates. If values are not defined, then SMOG 2 will

assign gen-pairs=0, gmx-combination-rule=1, nbfunc=1, fudgeLJ=1 and fudgeQQ=1.

A contact function declaration includes the additional contactGroup attribute, which is

used to map the function to specific groups of contacts. For example, in Listing 6.7, the

contact group c was declared with intraRelativeStrength=1 and normalize option set to

1 (true).

In code Listing 6.10, “?” marks indicate that the contact parameters c6, and c12 would

be calculated automatically by the program using distances found in the PDB structure.

energynorm tells SMOG 2 to calculate the value of εC (i.e. normalized) via the scaling

equations. If one uses N-M functions in Gromacs, then table files have to be included

(see Section 4.2.2 for syntax and details). Table files are not needed when running in

OpenSMOG in openMM.
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6.2.5 Extras file

There are many times when one may want to include static information in a top file.

For example, you may want to use the bondtypes directive. For this type of information,

one needs to include an “extras” file. This file may be called “extras” or it may have

the suffix “extras”. For an example on how to use this file, see Section 8.2.

6.2.6 ions.def file

When using smog ions, one can either give the exact ion parameters on the command

line, or you may give a template directory. In the latter case, smog ions will look for

a file called “ions.def” or a file that has the suffix “ions.def”. If this file is found, then

smog ion will directly add the relevant terms to the atomtypes section of the top file.

1 MG 1 2 5.96046e-09 0

2 K 1 1 5.96046e-09 0

3 CL 1 -1 5.96046e-09 0

Listing 6.11: example ions.def file. Format: ion name, mass, charge, c12, c6



Chapter 7

Adding a new residue

This chapter provides a step-by-step tutorial on how to add a new residue type using

SMOG 2 template files. Rather than introduce a new residue, we will go through the

declarations necessary the modified RNA residue MIA, which is now part of the default

all-atom model.

The residue 2-methylthio-N6 isopentenyl adenosine (MIA) is a modified nucleic acid

residue that is present in many RNA structures. It is nearly identical to Adenine,

though there are a few additional atoms.

7.1 Step 1 - Examine the molecular structure

Make sure to have the correct chemical structure of your molecule. A useful method is

to visually inspect it with a molecular visualization program (e.g. VMD or PyMOL):

62
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7.2 Step 2 - Create a new All-Atom template directory

Since we’re going to explicitly define each atom in the MIA residue, the example here will

use the all-atom model. When adding a new residue, you can either copy an existing

set of templates, or directly modify the default models. However, if you modify the

default models, you should re-run smog-check to ensure that the baseline models were

not inadvertently altered.

7.3 Step 3 - Define a new residue

As mentioned in Chapter 6, the biomolecular information file (.bif) defines the structure

of all biomolecules in your system. Here we will define the residue information by

declaring all of the atoms, bonds and improper dihedrals within the residue.

7.3.1 Place the new residue tag in the .bif file

As you get acquainted with the AA-whitford09.bif file structure (the default tem-

plates), you’ll find that the residues appear grouped together according to their type:

ligands, amino and nucleic residues. The residue type of MIA is nucleic, so it is added

for convenience next to the existing nucleic residues. The <residue> tag encapsulates

all of the residue information.

2945 <!-- NUCLEIC RESIDUES -->

2946

2947 <!--2-methylthio-N6 isopentenyl adenosine-->

2948 <residue name="MIA" residueType="nucleic">

2949 <atoms>

2950 </atoms>

2951 <bonds>

2952 </bonds>

2953 <impropers>

2954 </impropers>

2955 </residue>

2956

2957 <!--RNA A-->

2958 <residue name="A" residueType="nucleic">

Listing 7.1: Nucleic residue section of .bif file

Keep in mind that the attribute name should match the residue name in the PDB file.
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7.3.2 List all of the atoms in the residue

List all of the atom names in your residue as they appear in your PDB. The <atoms>

tag encapsulates all the atoms in the biomolecule.

2945 <!-- NUCLEIC RESIDUES -->

2946

2947 <!--2-methylthio-N6 isopentenyl adenosine-->

2948 <residue name="MIA" residueType="nucleic">

2949 <atoms>

2950 <atom bType="B_1" nbType="NB_1" pairType="P_1">P</atom>

2951 <atom bType="B_1" nbType="NB_1" pairType="P_1">O1P</atom>

2952 <atom bType="B_1" nbType="NB_1" pairType="P_1">O2P</atom>

2953 <atom bType="B_1" nbType="NB_1" pairType="P_1">O5*</atom>

2954 <atom bType="B_1" nbType="NB_1" pairType="P_1">C5*</atom>

2955 <atom bType="B_1" nbType="NB_1" pairType="P_1">C4*</atom>

2956 <atom bType="B_1" nbType="NB_1" pairType="P_1">O4*</atom>

2957 <atom bType="B_1" nbType="NB_1" pairType="P_1">C3*</atom>

2958 <atom bType="B_1" nbType="NB_1" pairType="P_1">O3*</atom>

2959 <atom bType="B_1" nbType="NB_1" pairType="P_1">C2*</atom>

2960 <atom bType="B_1" nbType="NB_1" pairType="P_1">O2*</atom>

2961 <atom bType="B_1" nbType="NB_1" pairType="P_1">C1*</atom>

2962 <atom bType="B_1" nbType="NB_1" pairType="P_1">N9</atom>

2963 <atom bType="B_1" nbType="NB_1" pairType="P_1">C8</atom>

2964 <atom bType="B_1" nbType="NB_1" pairType="P_1">N7</atom>

2965 <atom bType="B_1" nbType="NB_1" pairType="P_1">C5</atom>

2966 <atom bType="B_1" nbType="NB_1" pairType="P_1">C6</atom>

2967 <atom bType="B_1" nbType="NB_1" pairType="P_1">N6</atom>

2968 <atom bType="B_1" nbType="NB_1" pairType="P_1">N1</atom>

2969 <atom bType="B_1" nbType="NB_1" pairType="P_1">C2</atom>

2970 <atom bType="B_1" nbType="NB_1" pairType="P_1">N3</atom>

2971 <atom bType="B_1" nbType="NB_1" pairType="P_1">C4</atom>

2972 <atom bType="B_1" nbType="NB_2" pairType="P_1">S10</atom>

2973 <atom bType="B_1" nbType="NB_1" pairType="P_1">C11</atom>

2974 <atom bType="B_1" nbType="NB_1" pairType="P_1">C12</atom>

2975 <atom bType="B_1" nbType="NB_1" pairType="P_1">C13</atom>

2976 <atom bType="B_1" nbType="NB_1" pairType="P_1">C14</atom>

2977 <atom bType="B_1" nbType="NB_1" pairType="P_1">C15</atom>

2978 <atom bType="B_1" nbType="NB_1" pairType="P_1">C16</atom>

2979 </atoms>

2980 <bonds>

2981 </bonds>

2982 <impropers>

2983 </impropers>

2984 </residue>

2985

2986 <!--RNA A-->

Listing 7.2: Adding the atoms section to the residue structure

In this example, as in the default models, all bonded interactions (bonds, angles and

dihedrals) are defined the same for all atoms. Therefore, only one atom group needs

to be defined. The bond type (bType) is B 1 for all atoms. The contact interactions
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pairType=P 1 are also defined to be the same for all atoms. However, changing the

mass of a specific atom, such as sulfur (S10) in our example, will require a different

non-bonded definition, since there will be a different excluded volume term. In this

example, the new nbType NB 2 will have to be defined in the .nb file.

7.3.3 List all of the bonds

The chemical structure should tell you how atoms are covalently linked. Inspect those

bonds and add them to the <bonds> section. The <bonds> tag encapsulates all the

bonds in the biomolecule.

2980 <bonds>

2981 <!--BACKBONE-->

2982 <bond energyGroup="bb_n">

2983 <atom>P</atom>

2984 <atom>O1P</atom>

2985 </bond>

2986 <bond energyGroup="bb_n">

2987 <atom>P</atom>

2988 <atom>O2P</atom>

2989 </bond>

2990 <bond energyGroup="bb_n">

2991 <atom>P</atom>

2992 <atom>O5*</atom>

2993 </bond>

2994 <bond energyGroup="bb_n">

2995 <atom>O5*</atom>

2996 <atom>C5*</atom>

2997 </bond>

2998 <bond energyGroup="bb_n">

2999 <atom>C5*</atom>

3000 <atom>C4*</atom>

3001 </bond>

3002 <bond energyGroup="bb_n">

3003 <atom>C4*</atom>

3004 <atom>O4*</atom>

3005 </bond>

3006 <bond energyGroup="bb_n">

3007 <atom>C4*</atom>

3008 <atom>C3*</atom>

3009 </bond>

3010 <bond energyGroup="bb_n">

3011 <atom>C3*</atom>

3012 <atom>O3*</atom>

3013 </bond>

3014 <bond energyGroup="bb_n">

3015 <atom>C3*</atom>

3016 <atom>C2*</atom>

3017 </bond>

3018 <bond energyGroup="bb_n">

3019 <atom>C2*</atom>



Chapter 7. Adding a new residue definition 66

3020 <atom>O2*</atom>

3021 </bond>

3022 <bond energyGroup="bb_n">

3023 <atom>C2*</atom>

3024 <atom>C1*</atom>

3025 </bond>

3026 <bond energyGroup="bb_n">

3027 <atom>C1*</atom>

3028 <atom>O4*</atom>

3029 </bond>

3030 <!--FUNCTIONAL GROUP-->

3031 <bond energyGroup="sc_n">

3032 <atom>C1*</atom>

3033 <atom>N9</atom>

3034 </bond>

3035 <bond energyGroup="pr_n">

3036 <atom>N9</atom>

3037 <atom>C8</atom>

3038 </bond>

3039 <bond energyGroup="pr_n">

3040 <atom>C8</atom>

3041 <atom>N7</atom>

3042 </bond>

3043 <bond energyGroup="pr_n">

3044 <atom>N7</atom>

3045 <atom>C5</atom>

3046 </bond>

3047 <bond energyGroup="pr_n">

3048 <atom>C5</atom>

3049 <atom>C6</atom>

3050 </bond>

3051 <bond energyGroup="pr_n">

3052 <atom>C6</atom>

3053 <atom>N6</atom>

3054 </bond>

3055 <bond energyGroup="pr_n">

3056 <atom>C6</atom>

3057 <atom>N1</atom>

3058 </bond>

3059 <bond energyGroup="pr_n">

3060 <atom>N1</atom>

3061 <atom>C2</atom>

3062 </bond>

3063 <bond energyGroup="pr_n">

3064 <atom>C2</atom>

3065 <atom>N3</atom>

3066 </bond>

3067 <bond energyGroup="pr_n">

3068 <atom>N3</atom>

3069 <atom>C4</atom>

3070 </bond>

3071 <bond energyGroup="pr_n">

3072 <atom>C4</atom>

3073 <atom>C5</atom>

3074 </bond>
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3075 <bond energyGroup="pr_n">

3076 <atom>N9</atom>

3077 <atom>C4</atom>

3078 </bond>

3079 <!--ADDITIONAL TO "A" FUNCTIONAL GROUP-->

3080 <bond energyGroup="pr_n">

3081 <atom>C2</atom>

3082 <atom>S10</atom>

3083 </bond>

3084 <bond energyGroup="pr_n">

3085 <atom>S10</atom>

3086 <atom>C11</atom>

3087 </bond>

3088 <bond energyGroup="pr_n">

3089 <atom>N6</atom>

3090 <atom>C12</atom>

3091 </bond>

3092 <bond energyGroup="pr_n">

3093 <atom>C12</atom>

3094 <atom>C13</atom>

3095 </bond>

3096 <bond energyGroup="pr_n">

3097 <atom>C13</atom>

3098 <atom>C14</atom>

3099 </bond>

3100 <bond energyGroup="pr_n">

3101 <atom>C14</atom>

3102 <atom>C15</atom>

3103 </bond>

3104 <bond energyGroup="pr_n">

3105 <atom>C14</atom>

3106 <atom>C16</atom>

3107 </bond>

3108 </bonds>

Listing 7.3: Adding the bonds section to the residue structure

Note that the bonds are separated by the comments: BACKBONE,FUNCTIONAL GROUP,

ADDITIONAL BONDS TO ’RNA A’ FUNCTIONAL GROUP. The bond tag attribute energyGroup

classifies the energy group the specific bond belongs to and helps to determine the di-

hedral strengths. The energy group bb n refers to bonds that belong to the backbone

group, and pr n refers to the functional group. It is sometimes useful to use an existing

residue as a reference if we know that the new residue only requires minor modifications.

In our example, MIA is a modified RNA A molecule. All backbone and functional group

bonds of RNA A can be added to MIA and we are left to determine the few other bonds

created by the additional atoms: S10, C11-C16. The additions are added under the com-

ment ADDITIONAL BONDS TO ’RNA A’ FUNCTIONAL GROUP with energy group of pr n.
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7.3.4 List the improper dihedrals

Improper dihedrals cannot be dynamically calculated by the program using the bonds,

and should be added separately. The tag <improper></improper> holds four atoms.

The order of the four atoms here defines a specific improper dihedral within a biomolecule.

How to find an improper dihedral:

An improper dihedral is used to ensure proper geometry about a chiral center (i.e. pre-

vent symmetry inversion due to an absent hydrogen atom). A proper dihedral would be

defined by four sequential atoms connected by bonds (such as the dihedral C4*-C5*-O5*-

P). An improper dihedral is defined by atoms that have a branched bonded geometry.

Those angles need to be identified using the chemical structure of the molecule. For ex-

ample we consider the four carbon atoms: C13,C14,C15,C16 and their bonds as defined

above (highlighted in orange).

Finally, we add all of the improper dihedrals to our residue. In our example there is

only one additional improper dihedral described above.

Add the improper dihedrals section to the residue structure:

3109 <impropers>
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3110 <improper>

3111 <atom>C3*</atom>

3112 <atom>C4*</atom>

3113 <atom>C5*</atom>

3114 <atom>O4*</atom>

3115 </improper>

3116 <improper>

3117 <atom>O3*</atom>

3118 <atom>C3*</atom>

3119 <atom>C4*</atom>

3120 <atom>C2*</atom>

3121 </improper>

3122 <improper>

3123 <atom>O2*</atom>

3124 <atom>C2*</atom>

3125 <atom>C1*</atom>

3126 <atom>C3*</atom>

3127 </improper>

3128 <improper>

3129 <atom>C2*</atom>

3130 <atom>C1*</atom>

3131 <atom>O4*</atom>

3132 <atom>N9</atom>

3133 </improper>

3134 <!--ADDITIONAL IMPROPER DIHEDRAL TO "RNA A" -->

3135 <improper>

3136 <atom>C13</atom>

3137 <atom>C14</atom>

3138 <atom>C15</atom>

3139 <atom>C16</atom>

3140 </improper>

3141 </impropers>

3142 </residue>

Listing 7.4: Adding the improper dihedrals section to the residue structure

7.4 Step 4 - Define a non-bonded group in the .nb file

Adding a new atom of a different mass requires a creation of a new non-bonded parameter

definition. In our example we chose the atom sulfur to have a mass that is twice the mass

of carbon. A new <nonbond> tag is added and it encapsulates the new non-bond group

information such as mass charge and other non-bonded terms. The mass is doubled in

the mass entry. The nbType includes the previously defined group name NB 2 that is

consistent with the .bif file.

Adding a new non-bonded type in the .nb fie:
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1 <?xml version=’1.0’?>

2 <nb>

3 <!-- DEFAULTS -->

4 <defaults gen-pairs="0"/>

5 <!-- GENERAL NONBONDS -->

6 <nonbond mass="2.00" charge="0.000" ptype="A" c6="0.0" c12="5.96046e-9">

7 <nbType>NB_2</nbType>

8 </nonbond>

9 <nonbond mass="1.00" charge="0.000" ptype="A" c6="0.0" c12="5.96046e-9">

10 <nbType>NB_1</nbType>

11 </nonbond>

12 <!-- CONTACTS -->

13 <contact func="contact_1(6,12,?,energynorm)" contactGroup="c">

14 <pairType>*</pairType>

15 <pairType>*</pairType>

16 </contact>

17 </nb>

Listing 7.5: Defining a new non-bonded type in the .nb file
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Additional supported interaction

types

As described above, it is the aim of SMOG 2 that the user will be able to extend

the models in a wide range of ways. Accordingly, it is not possible that we provide

descriptions of every possible variation that one may explore. However, here, we make

an effort to provide some examples of how to implement specific features that we think

may be frequently of interest.

8.1 Adding non-standard bonds between specific atoms

There are often cases where the covalent geometry of the system can not be determined

by a general set of rules. For example, disulfide bonds may be formed, or broken,

depending on the oxidation state. As another example, sugar structures often have

branching patterns that do not form linear chains. For these types of chemical bonds,

we provide the BOND option in the PDB file. If you would like to add a chemical bond,

then add BOND lines immediately after the END line in the PDB file. This will add

a bond, and all associated bond angles and dihedrals. Also, it will exclude contacts

between any two atoms that are interacting through a bonded interaction (bond, angle,

dihedral) that is defined by a BOND interaction.

prior to SMOG v2.4.5: The formatting is the following:

BOND ChainIndex1 AtomIndex1 ChainIndex2 AtomIndex2 energygroup

ChainIndex1 and AtomIndex1 indicate the first atom involved in the bond. ChainIndex1

is the index of the chain in which the atom exists, starting at 1. AtomIndex1 is the

71
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number of the atom, as it appears in the PDB file. Note, ChainIndex1 is not necessarily

the chain ID. ChainIndex2 and AtomIndex2 indicate the second atom involved in the

bond. energygroup indicates the properties of any dihedral angles that have the new

bond as a middle bond (See Chapter 6 for discussion on energy groups). For example,

the following line:

BOND 1 51 4 100 r p

would add a chemical bond between the atom numbered 51 in the first chain and the

atom numbered 100 in the 4th chain. The bond properties would be determined based on

the .b file settings, and the energy group of any associated dihedrals would be r p. When

SMOG 2 runs, it will write information to the screen as the BOND lines are detected. It

will also write out information about what it interpreted the lines to mean, so you can

verify that the intended bonds are added.

v2.4.5, and later: Support was added for BOND definitions with coarse-grained mod-

els. The formatting when using the -AA flag is the same as before:

BOND ChainIndex1 AtomIndex1 ChainIndex2 AtomIndex2 energygroup

However, if using the -CA or -tCG options, then the format is:

BOND ChainIndex1 ResidueIndex1 ChainIndex2 ResidueIndex2 energygroup

Note that all bond angles and dihedrals that may be defined using the newly-added

BOND will be automatically generated. However, in v2.4.4 and earlier, only dihedrals

that had the added bond as the central bond were added.

8.2 Including atom-type-specific parameters in a SMOG

model

One of the goals of SMOG 2 is to allow one to “mix and match” elements of SMOG

models and more highly-detailed energetic models (e.g. AMBER or CHARMM). For

this, we have introduced the ability to define bonds, angles and dihedrals “by type”. For

example, if you would like all bonds between atoms of bType=B 1 and bType=B 2 to

be given AMBER parameters, you could include the AMBER definition in the “extras”

file (or any file with the suffix “extras” within the template directory) and then define

the bond of type bond bytype in the .b file. In this example, the .b file would have

<bond func="bond_bytype()">

<bType>B_1</bType>
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<bType>B_2</bType>

</bond>

while the extras file would have

bondtypes < C OS 1 0.1323 10000

Notice in this example that the atom names in the extras file do not need to correspond

to the values used for bTypes. This is intentional. In SMOG 2, each atom is assigned

a bType, nbType and pairType. When determining which interaction to assign to a

bond, the bType is read. However, when using bond bytype, the type considered by

Gromacs will be the atom type (which is the nbType in SMOG 2). So, in this example,

if a residue were to have a C-O bond, and the C atom were bType=B 1 and nbType=C,

while the O atoms were bType=B 2 and nbType=OS, then the bondtype parameters

for C-OS would be used in the top file. When these templates are used to generate a

top file, it would only list the atom numbers in the bonds section, while the parameters

would appear under bondtypes.1

The extras file may be used to add content to any supported directive. However, non-

bond params, bondtypes, angletypes and dihedraltypes lines are only written if the atom

types for each definition are used in a given SMOG model and simulated system. This

ensures that the top file only contains information that is required for the given system.

For complete examples where AMBER terms have been added to SMOG models, see

the SMOG 2 Force Field Repository.

8.3 Including perfectly free angles, dihedrals and contacts

In order to allow specific combinations of atom types to be given no interaction, the

“free” interaction functions (angle free, dihedral free, and contact free) are sup-

ported. They can be used as function types in the .b or .nb file. As an example, suppose

you added a FRET dye as a new residue into the .bif:

<residue name="A594" residueType="ligand">

<atoms>

<atom bType="C" nbType="DYE" pairType="free">C1</atom>

<atom bType="C" nbType="DYE" pairType="free">C2</atom>

<atom bType="C" nbType="DYE" pairType="free">C3</atom>

...

1The format may vary when using the -OpenSMOG option

https://smog-server.org/smog2/template_repo/
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</atoms>

</residue>

To ensure that no native contacts would be defined with the FRET dye, the contact free

function must be used in the .nb file:

<contact func="contact_free()" contactGroup="c">

<pairType>free</pairType>

<pairType>*</pairType>

</contact>

Further, in order to ensure that exclusions are also not added for atoms that were

identified as “in contact” (according to whichever contact protocol you have selected,

such as Shadow, or cut-off), then you need to make sure that the function is declared in

the .sif file, where the exclusions are explicitly disabled by setting the “exclusions” tag

to zero:

<functions>

...

...

<function name="contact_free" directive="pairs" exclusions="0"/>

</functions>

Together, this example would ensure that an atom of pairType free that is interacting

with any other type (*) will be given a function contact free, which adds nothing to

the top file. As a note: matching angle free also nullifies any dihedrals containing the

angle. Using free functions will not change the normalizations for contact and dihedral

interaction strengths, i.e. the contacts and dihedrals not written to the .top are still

counted in the normalization sums. If you disable normalizations, then this will not be

an issue.

8.4 Adding electrostatics

While not part of the default structure-based models distributed with SMOG 2, there

are often times where it is desirable to add some degree of electrostatic interactions, or

one would like to use interactions that are not of the 6-12 form.

There are two ways to introduce charges in your system. First, you can define the charge

for a nbType in the .nb file, as shown in Listing 6.10. This will tell SMOG to assign a
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charge to every atom of the specific nbType. The second way to add charges would be

to define charges for specific atoms within a residue type, in the .bif file, as shown in

Listing 6.1.

By default, Gromacs will treat electrostatic interactions as purely Coulombic. If you

would like to use a screened electrostatic interaction (i.e. Debye-Hückel), then you need

to supply a table to Gromacs, or use OpenSMOG/OpenMM to perform your simulations.

If using Gromacs, the tool smog tablegen will generate a screened-electrostatic look-up

table, as described by Givaty and Levy[15].



Appendix A

Energetic Description of the

Distributed Models

A.1 The All-Atom model

This model is selected with the -AA flag. All non-hydrogen atoms are explicitly rep-

resented, and the provided structure (i.e. the input PDB structure) is defined as the

global potential energy minimum. Here, we provide a complete description of the de-

fault all-atom structure-based model energy function, which is defined by the template

SBM AA. All calculations employ reduced units (see A.4). Each atom is represented as

a single bead of unit mass, and the charge of each atom is set to zero. Covalent geometry

is maintained through harmonic interactions that ensure the bond lengths, bond angles,

improper dihedral angles and planar dihedral angles remain about the values found in

input structure. Non-bonded atom pairs that are in contact in the provided structure

between residues i and j, where i > j + 3 for proteins and i 6= j for RNA, are given an

attractive 6-12 potential. The minimum of each 6-12 interaction is set to the distance

of that atom pair in the provided structure. All non-native interactions between atoms

that are not in contact in the native structure are repulsive. Contacts were defined

according to the Shadow algorithm (See Chapter 5.8, with an all-atom cutoff distance

of 6 Å and a shadowing radius of 1 Å. The functional form of the potential is,
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V =
∑

bonds

εr
2

(ri − ri,0)2 +
∑

angles

εθ
2

(θi − θi,0)2+∑
impropers

εχimp

2 (χi − χi,0)2 +
∑

planar

εχplanar
2 (χi − χi,0)2

+
∑

backbone

εBBFD(φi − φi,0) +
∑

sidechains

εSCFD(φi − φi,0)

+
∑

contacts

εC

[(
σij
rij

)12

− 2

(
σij
rij

)6
]

+
∑

non−contacts

εNC

(
σNC

rij

)12

(A.1)

where,

FD(φ) = [1− cos(φ)] +
1

2
[1− cos(3φ)] (A.2)

When using SMOG 2, all values may be adjusted by the user, such as defining stabilizing

non-native interactions and including non-specific dihedral angles. However, for the

default model ri,0, θi,0, χi,0, φi,0 and σij are given the values defined by the provided

structure. For the default model, the parameters are set to the following values:

εr = 100ε/Å2, εθ = 80ε/rad2, εχimp = 10ε/rad2, εχplanar = 40ε/rad2, εNC = 0.1ε, σNC =

2.5Å, ε = 1.

Note that, relative to the original implementation of this model, εr is decreased by a

factor of two, εθ is increased and εNC is increased from 0.01ε to 0.1ε. Also, ω dihedrals

are given the strength εχimp . As discussed in the SMOG 2 manuscript [16], this allows

for a timestep of 0.002 to be utilized, which is larger than the originally-implemented

0.0005. ε is the reduced energy unit (see A.4) and has the value of 1 in the .top file

which is equivalent to 1 kJ/mol if interpreted in Gromacs units. When assigning dihedral

interaction weights (εBB and εSC), dihedrals are first grouped if they have a common

middle bond. For example, in a protein backbone, there are up to four dihedral angles

that may be defined that have the C − Cα bond as the middle bond. Each dihedral

group is given a summed weight of εBB, or εSC. The ratio RBB/SC = εBB
εSC

is set to 1

for nucleic acid dihedral angles and 2 for protein dihedral angles. εBB for protein and

nucleic acids are equal. Dihedral strengths and contact strengths are scaled such that:

RC/D =
∑
εC∑

εBB+
∑
εSC

= 2∑
εC +

∑
εBB +

∑
εSC = Nε

The sums are over all dihedral angles in the system, and N is the number of atoms in

the system.

Note: The rescaling of dihedrals based on common middle bonds may not always desired.

To explicitly indicate whether this feature should be enabled, add the following child

element within the settings element in the .sif file
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1 <dihedralNormalization dihedralCounting="0" />

0 indicates that counting should be turned off. 1 (default) indicates that counting should

be performed.

A.2 The Cα model

This model is selected with the -CA flag. The Cα model coarse-grains the protein as

single bead of unit mass per residue located at the position of the α carbon. ~x0 denotes

the coordinates of the native state and any subscript 0 signifies a value taken from the

native state. The potential is given by

VCα(~x, ~x0) =
∑

bonds

εr
2

(r − r0)2 +
∑

angles

εθ
2

(θ − θ0)2 +
∑

dihedrals

εDFD(φ− φ0)

+
∑

contacts

εC

[
5
(σij
r

)12
− 6

(σij
r

)10
]

+
∑

non−contacts

εNC

(
σNC

rij

)12

(A.3)

where the dihedral potential FD is,

FD(φ) = [1− cos(φ)] +
1

2
[1− cos(3φ)]. (A.4)

The coordinates ~x describe a configuration of the α-carbons, with the bond lengths to

nearest neighbors r, three-body angles θ, four-body dihedrals φ, and distance between

atoms i and j given by rij . Protein contacts that are separated by less than 3 residues

are neglected. Excluded volume is maintained by a hard wall interaction giving the

residues an apparent radius of σNC = 4 Å. The native bias is provided by using the

parameters from the native state ~x0. Setting the energy scale ε ≡ 1, the coefficients are

given the homogeneous values: εr = 200ε/Å2, εθ = 40ε/rad2, εD = εC = εNC = ε.

A.3 Gaussian contact potential (+gaussian templates)

Gaussian-shaped contact potentials (Fig. A.1) are added to an unofficial version of

Gromacs that is available at smog-server.org, natively in OpenSMOG, and also in NAMD

(see section A.3.4). These potentials are used when one desires control over either the

shape of the excluded volume or the width of the attractive potential. They are also

useful if a single contact requires multiple minima. In-depth characterization of the
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Gaussian potentials with all-atom structure-based models using SMOG can be found in

[13] (templates/SBM AA+gaussian). They are explored in the context of a multi-basin

Cα model here [17].

A.3.1 templates/SBM AA+gaussian

This template can be selected using the -AAgaussian option. Selecting this template

changes the contact potential to ftype = 6, εC=?, r0=?, σ=
√
r2

0/(50 ln 2), and enforces

rNC=0.21 nm. r12
NC = εNC×σ12

NC, i.e. the non-native excluded volume term, with εNC =

0.1 and σNC = 0.25 nm. The rather complex definition of the width of the Gaussian

well σ is designed to model the variable width of the LJ potential: CLJ(1.2r0) ∼ −1/2

so σ is defined such that G(1.2r0) = −1/2 giving σ2 = (r0)2/(50 ln 2).

• Note: v2.0 and earlier had rNC=0.17 nm, i.e. εNC = 0.01ε and σ12
NC = 0.25 nm.

A.3.2 templates/SBM calpha+gaussian

This template can be selected using the -CAgaussian option. Selecting this template

changes the contact potential to ftype = 6, εC=?ε, r0=? nm, σ=0.05 nm, rNC=0.4 nm.

Figure A.1: Comparison of Lennard-Jones and Gaussian contact potentials. Black
curves show LJ contact potentials with minima at 6 Å and 10 Å. The Gaussian contact
potential shown in green has an excluded volume σNC (called rNC elsewhere in the
manual) that can be set independently of the location of the minimum. The dotted
green line shows how the Gaussian contact would change as another minimum at 10 Å

is added. Image adopted from [6].
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A.3.3 Dual-basin Gaussian potential

Dual-basin interactions may be included when using OpenSMOG. For Gromacs, this is

not yet implemented as a function in SMOG 2, but a description of ftype= 7, for use in

an unofficial version of Gromacs, can be found on the SMOG webserver.

A.3.4 Downloading the source code extensions

A.3.4.1 OpenSMOG

OpenSMOG supports gaussian potentials without user-defined modifications.

A.3.4.2 Gromacs

The Gaussian contact shapes are not available in the standard Gromacs distributions.

The necessary source code can be obtained at http://smog-server.org/extension/. This

source distribution is compiled exactly as official Gromacs source distributions.

A.3.4.3 NAMD

Currently the “nightly build” version of NAMD contains the Gaussian potentials in the

“Go potentials” section. More information can be found in the NAMD manual.

A.3.5 Including Gaussian potentials in the topology files

A.3.5.1 Gromacs

The Gaussian interaction is designated in the [ pairs ] section of the topology file.

• ftype = 6

– Cij(rij) = −εC
((

1 + 1
εC

r12NC

r12ij

)(
1− exp

[
− (rij−r0ij)2

2σ2
ij

])
− 1

)
– r12

NC = εNC × σ12
NC, where εNC and σNC come from the non-native excluded

volume c12 term.

– εC → depth of the attractive well

– r0 → position of the minimum of the attractive well in nm

– σ → width of the attractive well in nm

http://smog-server.org/extension/gauss.html
http://smog-server.org/extension/
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– r12
NC → position of the excluded volume hard wall in nm12

– This form includes an excluded volume part, and therefore the pair ij should

be included in [ exclusions ]. The multiplicative form anchors the mini-

mum of the well at (r0,−εC).

Note that ftype = 5 and ftype = 7 exist in the SBM extensions version, though there

is no implementation in SMOG2 at the moment. They can be added by hand if desired.

A.3.5.2 NAMD

Currently the “nightly build” version of NAMD contains the Gaussian potentials in the

“Go potentials” section. More information can be found in the NAMD manual.

A.4 Reduced units

SMOG topology files are written in reduced units, meaning that the masses, energies,

and Boltzmann’s constant are unitless and given a value of unity. (Note that lengths

are written with units of nanometers for readability.) For example, this means that the

all-atom model gives a mass of 1 to all the atoms with weights near 12 amu and the

C-alpha model gives a mass of 1 for each coarse-grained residue bead. In such a scheme,

the physically meaningful temperature is then near 1 (i.e. kBT ≈ 1).

Independent of reduced units, interpreting the simulation temperatures used in SMOG

models as real world temperatures can be challenging due to the mixing of effective

energetic and entropic terms in a simplified potential. Gromacs adds an additional

caveat to the expression of reduced temperatures because Gromacs uses a hard-coded

value of Boltzmann’s constant (kB) of 0.00831451 in Gromacs units of kJ/mol/K. Thus,

a reduced temperature of 1 is expressed as 1/0.00831451 = 120.27 in a Gromacs .mdp

file. You will find that proteins will typically unfold at reduced temperatures of 1-1.3 or

Gromacs temperatures of 120-155. In OpenSMOG (v2.4.5 and later), reduced units are

used consistently for temperature throughout all reporting. For a discussion of mixing

externally known energetic terms with the effective energetics in SMOG (or equivalently,

trying to estimate the reduced energy unit in physical units), see Wang et al [5].

One should also be careful when interpreting simulated time in SMOG models. Since

these models (often) lack energetic roughness, the effective diffusion coefficients are

elevated. As a results, numerical values of time are not directly meaningful. Instead,

it is important to estimate the effective time of a simulated time unit (i.e. the number
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reported as time). For an example, see Yang et al. [18], where diffusion coefficients in

SMOG models and explicit-solvent simulations were compared for the ribosome. Since

the effect of minimal roughness in SMOG models directly impacts diffusion, comparison

of diffusion coefficients represents a sensible approach to estimating effective timescales.

In contrast, comparing mean first-passage times for barrier-crossing events (e.g. a large-

scale conformational change) can be extremely error-prone and lead to estimates that

are off by orders of magnitude.



Appendix B

Installing Perl Modules using

CPAN

B.1 Introduction

When installed Perl modules, it is often easiest to use CPAN, rather than manually

installing the RPMs. Here we provide an introduction to CPAN to get you started.

CPAN (“Comprehensive Perl Archive Network”) is a collection of over 100,000 Perl

modules ready to be installed. It is a great tool for easily adding Perl modules or

updating your version of Perl.

B.2 Installing CPAN

Here we introduce installation for Linux and OSX. CPAN can be installed using the

command line. If you have root privileges and are using the system Perl located at

/usr/bin/perl, then it’s easier to install via the package management system of your

Linux or OSX distribution. You can explore CPAN options by typing “?”.

RedHat/Fedora/CentOS Linux:

> sudo yum install perl-CPAN

Debian/Ubuntu Linux:

1. Install all dependent packages for CPAN:

> sudo apt-get install build-essential

2. Invoke the cpan command:

> cpan

83



Appendix B. Installing Perl Modules using CPAN 84

3. Enter the commands below:

> make install

> install Bundle::CPAN

OSX on Mac:

Before you can use CPAN, you need to configure your Mac appropriately. CPAN uses

some low-level tools to install modules, therefore tools like “Xcode” or the “Command

Line Tools for Xcode package” are necessary. These are available at the Apple’s De-

veloper site. You should also have a terminal or shell application downloaded from the

App store.

From the terminal application type the following and hit enter:

> cpan

This will take you through the installation process with more potential questions. You

can enter “yes” for every question.

B.3 Upgrading your perl version using CPAN

You can upgrade your CPAN and perl version if it is not up to date. This step is

recommended before installing any other modules.

1. In the CPAN application type:

> upgrade perl

2. If your perl or CPAN is not up to date, you can upgrade it:

> install CPAN

> reload cpan
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B.4 Example installation of a Perl module

Here we show an example of how to install the Perl module String::Util using CPAN.

1. Open your CPAN application as root (recommended) and type in:

> install String::Util

2. You should see some output messages in your terminal. If the installation is successful,

you should see an output saying “Installation Complete” or “Build install OK”.

This means you can go ahead and start using the module within your Perl scripts.

B.5 Troubleshooting tips

• Unsuccessful installation - Start by looking at the first error message that was out-

put to the screen. Most likely there are missing libraries that are required before

installing your module. It’s recommended that you install those missing libraries
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one by one, as instructed in the output messages. After installing the missing

libraries, try the installation of the modules again.

• Changing the Perl version linked to CPAN - as mentioned earlier, by default CPAN

works with the system Perl located at /usr/bin/perl. It can sometimes help to

work with a different Perl version if your system Perl version is damaged and you

cannot install modules properly. You can change which version CPAN sees by

replacing a single line in the CPAN executable script:

(i) Check the full path of CPAN executable by:

> which cpan

Usually the executable file is: /usr/local/bin/cpan

(ii) Open (as root) the executable file, for example using vi:

> vi /usr/local/bin/cpan

3 eval ’exec /usr/bin/perl -S $0 ${1+"$@"}’

Listing B.1: CPAN default code

(iii) Change the following line (line n.3) to include the full path of the version

you’d like to use:

3 eval ’exec /full/path/new/perl/version -S $0 ${1+"$@"}’

Listing B.2: CPAN updated code

Save the changes in the file. The next time you use CPAN, all of the newly installed

modules will be linked to the new perl version.
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FAQs and Tips

Why is grompp so slow when using SMOG models?

In an effort to reduce the size of .tpr files, grompp tries to find parameters that are

common (e.g. contacts with the same c6 and c12 parameters). In SMOG models, most

contacts have unique parameters. This can lead to a very large number of unique pa-

rameters, which are then compared against all other parameters in the .top file. As

a result, grompp executes a nested for loop that has increasing bounds (essentially an

N2 calculation). For small systems (less than ∼ 10, 000 atoms), this tends not to be

a problem. However, for systems of 100,000 atoms or greater, grompp can easily re-

quire hours to complete. Since this bookkeeping feature of grompp does not appear

to impact the performance of mdrun for SMOG models, it is desirable to disable this

parameter comparison. To disable this check, you can make a one-line modification

to the source code and rebuild Gromacs. For Gromacs v4.6.5, you will want to edit

src/kernel/convparm.c. Specifically, go to line 465, which reads:

if (!bAppend)

and replace it with

if (0)

For Gromacs 5.1.4 (v 2021.2), the corresponding code can be found on line 542 (462) of

src/gromacs/gmxpreprocess/convparm.c

We have found that this modification results in a .tpr file that is 20-60% larger, though

grompp can 100-1000 times faster.
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I used smog adjustPDB and when I run SMOG2 I get the error“FATAL ER-

ROR: It appears that a residue in the PDB file does not contain all of the

atoms defined in the .bif file.”. What is wrong?

If you are NOT using the -legacy option: The only real explanation for this is that you

are not using a mapping file that is consistent with the templates. If you are using

default models, then you can use the default mapping file. However, if you are using

non-standard templates, then you may need to use the -map option to specify which

mapping file to use.

If you are using the -legacy option: Sometimes, this error arises because there were

missing atoms in the PDB file (e.g. some atoms may have not been resolved in the

crystallographic model). If you are convinced that all atoms are present, then there

is another possibility. When you use smog adjustPDB, it makes its best guesses for

how residues should be named. For example, a 5’-terminal RNA residue (say G) will

be renamed with a 5 added to the residue name (G5). In the default templates, G5

is defined as a residue that has a terminal phosphate group, however most PDB files

are lacking these atoms. The appropriate name for a phosphate-less terminal G would

be G0P (zero, not O). If this is the case, you can provide your own mapping file for

smog adjustPDB, or you can manually edit the residue names in the pdb file.
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Klaus Schulten. Scalable molecular dynamics with namd. J. Comput. Chem., 26

(16):1781–1802, 2005.

[11] Antonio B Oliveira, Vinicius G Contessoto, Asem Hassan, Sandra Byju, Ailun

Wang, Yang Wang, Esteban Dodero-Rojas, Udayan Mohanty, Jeffrey K Noel,

Jose N Onuchic, and Paul C Whitford. SMOG 2 and OpenSMOG: Expanding

the limiting of structure-based models. Protein Science, 31:158–172, 2022.

[12] Jeffrey K Noel, Jorge Chahine, Vitor B P Leite, and Paul Charles Whitford. Cap-

turing transition paths and transition states for conformational rearrangements in

the ribosome. Biophys J, 107(12):2872–2881, December 2014.

[13] Jeffrey K Noel, Paul C Whitford, and José N Onuchic. The shadow map: a general
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