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1 Introduction

Structural biology techniques, such as nuclear magnetic resonance (NMR), x-ray
crystallography, and cryogenic electron microscopy (cryo-EM), have provided ex-
traordinary insights into the details of the functional configurations of biomolecular
systems. Recent advances in x-ray crystallography and cryo-EM have allowed
for structural characterization of large molecular machines such as the ribosome,
proteasome, and spliceosome. This deluge of structural data has been complemented
by experimental techniques capable of probing dynamic information, such as
Förster resonance energy transfer (FRET) and stopped flow spectrometry. While
these experimental studies have provided tremendous insights into the dynamics of
biomolecular systems, it is often difficult to combine the low resolution dynamical
data with the high-resolution structural data into a consistent picture. Computer
simulation of these biomolecular systems bridges static structural data with dynamic
experiments at atomic resolution (Fig. 1).

Since the first molecular dynamics simulations of bovine pancreatic trypsin
inhibitor 35 years ago [38], molecular simulations have become indispensable tools
in biophysics. Molecular dynamics simulations of biomolecules treat the molecule
as a collection of classical particles interacting through a potential energy function
called a force field [1]. The molecule’s dynamics are propagated through time by
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Fig. 1 Structure-based models bridge static high-resolution structural data with lower resolution
dynamical and structural data at the all-atom level. Many experimental inputs can be combined to
form a coherent picture of a biological process

numerical integration of Hamilton’s equations resulting in a molecular trajectory.
This trajectory can be used to gain a kinetic and thermodynamic understanding of
the system. Simulations can be performed using empirically parameterized force
fields that include explicit solvent. In principle, the chemistry-based representation
should reproduce the structure and dynamics of a biomolecular system without
requiring input from experimental structural data. In practice, making contact with
experimental observables poses harsh challenges for these force fields both due to
the level of accuracy required and the long time scales needed [54, 66]. In order
to integrate experimental data in a consistent manner, biomolecular models with
robust potential energy functions able to access long time scales are necessary. The
energy landscape theory of protein folding provides the theoretical underpinning
for structure-based models (SBM) [47]. These models impose a native bias by
explicitly including structural data in the Hamiltonian. The structural data is
derived from experimental techniques that are able to discern a representative
structure of a molecule in a deep free energy basin, e.g., a protein native state.
The native bias dramatically reduces the complexity of the resulting force field.
These simplifications allow for a clear physical understanding of a system and
open up biologically relevant timescales while retaining the essential dynamical
features. SBM have been validated by their application to protein dynamics,
such as folding, stretching, oligomerization, and functional transitions. Multiple
experimental inputs can be naturally included, e.g., by extending the single native
bias to include information from multiple conformers to explore conformational
transitions. Fueled by the introduction of an all-atom (AA) SBM, prospective new
applications for SBM are being explored in areas such as RNA folding, molecular
machines, and prediction of protein–protein interactions. This chapter will present
the basics of SBM and explain how a publicly available SBM, SMOG (Structure-
based MOdels in GROMACS http://smog.ucsd.edu), has been used to explore the
dynamics of systems as disparate as folding knots in proteins and accommodation
in the ribosome.

http://smog.ucsd.edu
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2 Structure-Based Models

2.1 Foundations in Energy Landscape Theory

The inclusion of a native bias, the hallmark of a SBM, has a rigorous footing
in the energy landscape theory of protein folding [8, 33, 47]. Protein folding is
a self-organizing process whereby a protein transitions from a highly disordered
ensemble (unfolded) to a structured ensemble (folded/native state). The relatively
short timescale with which the folded state is reached implies that any competing
nonnative states (traps) are shallow compared with the overall energy bias to folding.
If these traps are sufficiently shallow, the nonnative interactions can be grouped
into an effective diffusion [9, 17]. In addition, the uniqueness of the folded state
implies that it corresponds to the global minimum in the free-energy landscape.
The principle of minimal frustration states that evolution has achieved this folding
robustness by selecting for sequences where the interactions present in the native
structure are mutually supportive, i.e., attractive. The interactions are minimally
frustrated or, in other words, maximally consistent. This organization leads to the
protein folding on a funneled landscape where the energy on average decreases as
it forms structures similar to the native structure.

Minimal frustration and the funneled energy landscape give the theoretical foun-
dation for SBMs. A structure-based potential dramatically reduces the biomolecular
Hamiltonian’s complexity by stabilizing interactions that are spatially close in the
native configuration. While real protein funnels have residual energetic frustration
caused by nonnative interactions, the SBMs discussed here are “perfectly funneled”
models, since in the force field all interactions stabilize the native structure.
Nonnative interactions are strictly repulsive. In such a framework, any barriers to
folding must be free energy barriers arising from the various ways energy and
entropy compensate during folding. The ability of perfectly funneled models to
reproduce experimental folding trends and mechanisms shows that geometrical
effects like chain connectivity have an enormous influence on protein dynamics
[5,11,47]. Since the precise energetics are secondary to the geometry of the protein
molecule, this idea leads to the commonly held notion that geometry determines the
folding mechanism.

Even though SBMs were formulated in the context of protein folding, their
applications are widespread. Folding is only a first step in the lives of proteins which
go on to perform a myriad of functions in the cell. The funneled energy landscape
upon which the protein folds is the same landscape that controls functional protein
motions. Multiple functional conformational states captured by experiment can be
naturally included by extending the funneled landscape to have multiple basins.
Structured RNAs must also have evolutionary pressure to reduce the level of
frustration or they would encounter their own “Levinthal’s paradox.” The robust
dynamics of large molecular complexes such as the ribosome and proteasome must
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depend even less on the precise atomic energetic details and more on emergent
properties controlled by the geometry of their constituents. While all these systems
will have residual levels of frustration, the use of SBMs as a baseline is crucial to
partition the global properties, those largely dependent on structure, from the details
dependent on specific energetics.

2.2 Structure-Based Model as a Baseline

Simplified models have a long history of elucidating the organizing principles
governing complex systems. A key question is how sensitive a model is to its
underlying parameters. Determining the correct value for a parameter is often
equally important as understanding the sensitivity to perturbations in that parameter.
Since molecular geometry has a central influence on the motions leading to
molecular function, simplified models based on low free energy structures are a
natural starting point. The simplest models look at the normal modes of an energy
landscape created by replacing all short range interactions in a native structure by
Hookean springs [61]. These models can capture relevant rigid body motions. SBMs
provide an important generalization by allowing the possibility for “cracking,”
[24, 25, 40, 68] allowing interactions to break and reform, since the springs are
replaced by short range potentials. Thus, SBM can capture motion on all scales
from native basin dynamics to unfolding.

The straightforward formulation of a structure-based potential allows for sen-
sitivity analysis of the force field parameters [69] and their simplicity makes
them extremely fast to compute. The force field is readily extensible allowing the
introduction of complicated effects to be explored parametrically. For example,
the effects of electrostatics can be explored by perturbative addition of Coulomb
interactions [4,14,35], or the effects of solvent probed by the perturbative addition of
desolvation barriers [12]. A crucial question in the protein folding field has been how
proteins manage to achieve such smooth energy landscapes, or equivalently, why do
AA empirical force fields and structure prediction schemes have difficulty achieving
the level of specificity seen in proteins? Using structure-based potentials with
AA geometries, we can begin to address this question. These models completely
partition energetic effects from geometric effects, and through careful investigation,
may discern to what extent energetics contribute to the apparent native specificity
in protein structure, folding, and function. While processes like the formation
of nonnative intermediates during folding [18, 53, 60] and protein misfolding are
clearly cases that perfectly funneled SBM will be unable to fully describe, through
adding complexity in a piecemeal fashion to a robust baseline model, a more
complete understanding of the interplay between geometry and energy in even these
complicated systems will result.
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3 Implementation of Structure-Based Models

SBMs have a long history in the protein folding field. The folding dynamics of
minimally frustrated sequences were first tested in lattice models. Bryngelson et al.
[10] and Socci et al. [56] investigated a minimally frustrated lattice model with three
types of beads. They found that the dynamics could be well described by diffusion
along a small number of collective coordinates on an effective free energy surface
defined by those coordinates. As the structural correspondence between cubic
lattices and actual proteins is low, Nymeyer et al. implemented an off-lattice, coarse-
grained model of a protein-like structure. They compared the folding dynamics of
an energetically frustrated [62] versus a completely unfrustrated ˇ-barrel [45]. They
showed that the completely unfrustrated model, effectively a SBM, exhibited the
characteristics of a good folder, specifically, having exponential folding kinetics on a
funnel-shaped landscape that is robust to reasonable perturbations. Following these
successes, Clementi et al. [15] introduced the popular “C˛ model,” which also had a
coarse-grained representation of the protein. This model reproduced the transition-
state ensembles (TSE) of several small two- and three-state proteins. The C˛ model
has since been adopted by several investigators to explore myriad topics in protein
folding (see these references for some highlights [2, 11, 12, 22, 26, 28, 29, 52, 59]).
The off-lattice geometry allowed clear representation of protein structures, making
comparisons to experimentally determined dynamics possible. In order to capture
geometric effects like side chain packing, Whitford et al. introduced an AA SBM
[69]. This model is being used to represent proteins [69], RNA/DNA [64] and
ligands in a consistent fashion for both dynamics [42, 43, 66] and molecular
modeling [27, 50, 51]. These two models, AA and C˛ , are currently in wide use
and are available on the SMOG web server [44].

Before the two available models are described in detail, we review the key
components common to any SBM. The defining characteristic is that the parameters
are determined from a native structure. The potential V is composed of three
contributions,

V D V Bonded C V Repulsive
„ ƒ‚ …

Maintain geometry

C V Attractive
„ ƒ‚ …

Tertiary structure

: (1)

V Bonded includes interactions that maintain the covalently bonded structure and
torsional angles. This term also ensures correct chirality. V Repulsive contains spher-
ically symmetric hard wall repulsions that enforce excluded volume and prevent
chain crossings. Collectively, these two terms maintain the protein’s structure
and allowed conformational diversity. V Attractive contains short range, attractive
interactions between atoms (or residues if coarse graining) close in the native
state. These interactions are the core of the SBM and are discussed in the next
section.



36 J.K. Noel and J.N. Onuchic

10 30 50 70 90

10

30

50

70

90

Residue Index

0D
is
ta

nc
e 

(n
m

) 1.5

10 30 50 70 90

10

30

50

70

90

Residue Index

Fig. 2 Native contact map of ribosomal protein S6 (PDB code: 1RIS). Structure of the ˛=ˇ protein
S6 is shown with the N-terminus (residue 1) colored green. Left panel shows the proximity of the
nearest atomic contact for each residue pair up to a maximum of 1.5 nm. Right panel compares two
coarse-grained native contact maps. A pair of residues are considered a native contact if they share
a native atom–atom contact. Top triangle: 6Å cutoff. Bottom triangle: a 6Å cutoff with geometric
occlusion using Shadow [44]. The contacts which are excluded by Shadow are colored orange

3.1 Native Contact Map

Atoms that are spatially near in the native state are considered contacts and together
the set of all contacts composes a native contact map (Fig. 2). A contact map is
a binary symmetric matrix that encodes which atom pairs ij are given attractive
interactions in the SBM potential. In the context of a SBM, the native contact map
should approximate the distribution of stabilizing enthalpy in the native state that is
provided by short range interactions like van der Waals forces, hydrogen bonding,
and salt bridges. Any long range interactions or nonlocal effects are taken into
account in a mean field way through the native bias. For example, the hydrophobic
effect is encoded by the density of native contacts being larger on the interior of the
protein than on the surface.

Methods for constructing contact maps are based on the heavy atom distances
in the native structure. There are three widely used techniques: heavy atom cutoffs
[16], van der Waals radii overlaps [15, 55, 58], and geometric occlusions [44, 71].
Heavy atom cutoff maps define a cutoff distance RC, typically 4–6.5Å, and consider
all heavy atoms within RC of each other in contact. van der Waals radii cutoff maps
increase the radii of all the heavy atoms by either a multiplicative constant (�1:25)
or an additive constant (�1:4Å). Any atoms that then overlap are considered to be
in contact. The rationale for the multiplicative constant comes from overlapping
electron clouds, or “soft spheres.” The additive constant represents the size of one
water molecule. Half the diameter of water is added to each atomic radius, and
if atoms then overlap it means that a water cannot be placed between them. The
set of atom pairs excluding water from each other are presumed to interact, and thus
considered contacts (the software package CSU [55] uses this approach). Geometric
occlusion maps take the output of a heavy atom cutoff contact map, RC & 6Å, and
then remove any contacts that are geometrically obstructed. RC > 4:5Å introduces
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many unphysical or “occluded” contacts where atoms are interacting through an
intervening atom. Since these interactions are mostly induced dipole interactions,
electron screening effects should dampen the occluded interactions. van der Waals
radii overlaps and geometric occlusions both provide the short range, first layer of
atomic contacts. Geometric occlusion maps add longer range water- or cofactor-
mediated contacts up to the cutoff distance. The advantage of geometric occlusion
is that atoms separated by voids, or those coordinated by water and metals not
explicitly included in a protein simulation, can be accounted for without introducing
spurious occluded contacts.

van der Waals radii overlaps and geometric occlusions provide contact maps
that behave similarly in protein-folding simulations. Simulations with these maps
consistently predict cooperative, protein-like transitions for globular proteins. They
also reproduce thermodynamic folding intermediates for proteins with known inter-
mediates [15]. In the authors’ experience, heavy atom cutoff maps are not robust
in protein-folding simulations. Short-range cutoffs miss longer range contacts,
leaving the contact map sensitive to the precise packing of the native state, and
thus overweight regions of the contact map. This reduces the cooperativity of the
transition, leading to spurious thermodynamic intermediates. Longer cutoffs reduce
the sensitivity to packing by adding larger numbers of contacts, but this introduces
many unphysical contacts where atoms are interacting through an intervening atom.
This overabundance of contacts, by reducing the relative strength of each individual
contact, also tends to decrease cooperativity. SMOG uses a geometric occlusion
contact map called Shadow [44] for proteins. On the SMOG server, the default for
RNA/DNA systems is a 4Å heavy atom cutoff, but there are indications that Shadow
is also sensible for RNA folding.

Single bead per residue coarse-grained contact maps are generally derived from
the corresponding atomic structure. Coarse-grained contact maps could conceivably
be generated from the coarse-grained structure using C˛–C˛ distance cutoffs
(generally 7–12Å). Since the coarse-grained structure ignores side chain packing,
this metric poorly predicts the enthalpic contributions to the native state [39]. For
the C˛ model, SMOG considers two residues in contact if they share at least one
atomic contact.

3.2 SBM Potential

The SMOG structure-based forcefield is available in two grainings, a coarse-grained
(C˛) model [15] and AA model [64, 69].

3.2.1 C˛ Model

The C˛ model coarse grains the protein as single bead of unit mass per residue
located at the position of the ˛-carbon. Ex0 denotes the coordinates (usually obtained
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from the Protein Data Bank http://www.rcsb.org) of the native state and any
subscript 0 signifies a value taken from the native state. The potential is given by

VC˛.Ex; Ex0/ D
X

bonds

�r .r � r0/
2 C

X

angles

�� .� � �0/
2 C

X

backbone

�DFD.� � �0/

C
X

contacts

�CC.rij ; r
ij
0 / C

X

non�contacts

�NC

�

�NC

rij

�12

; (2)

where the dihedral potential FD is,

FD.�/ D Œ1 � cos.�/� C 1

2
Œ1 � cos.3�/�: (3)

The coordinates Ex describe a configuration of the ˛-carbons, with the bond lengths
to nearest neighbors r , three body angles � , four body dihedrals �, and distance
between atoms i and j given by rij . C denotes the contact potentials given to
the native contacts (see Sect. 3.2.3). Protein contacts that are separated by less
than 3 residues are neglected. Excluded volume is maintained by a hard wall
interaction giving the residues an apparent radius of �NC D 4Å. The native bias is
provided by using the parameters from the native state Ex0. Setting the energy scale
� � kBT � D 1, the coefficients are given the homogeneous values: �r D 100�,
�� D 40�, �D D �C D �NC D �.

3.2.2 All-Atom Model

The AA potential is quite similar to the C˛ potential, although representing the AA
geometry requires some additional terms. In the AA model, all heavy (nonhydrogen)
atoms are explicitly represented as beads of unit mass, so each interaction is now
between atoms as opposed to residues. Bonds, angles, and dihedrals therefore have
their traditional chemical meanings. In each residue, there is an additional backbone
dihedral and, except for glycine, many side chain dihedrals. Improper dihedrals
maintain backbone chirality and, when necessary, side chain planarity. The AA
potential VAA is

VAA.Ex; Ex0/ D
X

bonds

�r .r � r0/
2 C

X

angles

�� .� � �0/
2 C

X
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��.� � �0/
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X

backbone

�BBFD.� � �0/ C
X
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X
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�NC
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: (4)

http://www.rcsb.org
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As in the C˛ model, the coefficients are given homogeneous values: �r D 100�,
�� D 20�, �� D 40�, �NC D 0:01�, and �NC D 2:5Å. The effective repulsive size
for the atoms becomes �eff D .0:01/1=12�NC � 1:7Å. Again, protein contacts that
are separated by less than 3 residues are neglected. A technical issue is normalizing
the dihedral energy around each bond. When assigning dihedral strengths, we first
group dihedral angles that share the middle two atoms. For example, in a protein
backbone, one can define up to four dihedral angles that possess the same C�C˛

covalent bond as the central bond. Each dihedral in the group is scaled by 1=ND,
where ND is the number of dihedral angles in the group.

Two ratios determine the distribution of dihedral and contact energies, contact to
dihedral ratio RC/D and backbone to side chain ratio RBB/SC. In proteins RBB/SC D
�BB=�SC D 2 [69] and in RNA/DNA RBB/SC D �BB=�SC D 1 [64]. The contacts and
dihedrals are scaled relative to their total contributions, RC/D D

P

�C
P

�BBCP �SC
D 2.

Lastly, the total contact and dihedral energy is set equal to the number of atoms
�Natoms D P

�C C P

�BB CP

�SC. This choice gives folding temperatures near 1
in reduced units ensuring a consistent parameterization.

Notice that every term is based on the native structure except the noncontact
excluded volume term. In the C˛ model, all the residues have a homogeneous shape,
but in the AA model each residue has its unique geometry explicitly represented.
This gives the AA model structure independent sequence information that adds
heterogeneity to the model. This heterogeneity adds geometric frustration to the
model, since interactions can only be satisfied if the side chains are correctly
oriented [43]. A question of current interest is whether this sequence-dependent
information adds constraints to the folding dynamics, allowing the native bias to be
relaxed [3, 69].

3.2.3 Contact Potential

All of the pair interactions defined in the native contact map interact through a short
range, attractive potential, denoted in the SBM potential by C.rij ; r

ij
0 /. The contact

potential has a minimum at r
ij
0 , the distance between the pair in the native state.

Traditionally, a contact is defined through a Lennard–Jones (LJ) type potential, since
the LJ shape is readily available in molecular dynamics packages. In the C˛ model
a “10–12” LJ potential is used for contacts with the minimum set at the separation
between the C˛ pair in the native state r

ij
0 ,

CCA.rij ; r
ij
0 / D 5

 

r
ij
0

rij

!12

� 6

 

r
ij
0

rij

!10

; (5)

and in the AA model a “6–12” LJ potential with the minimum set at the separation
between a contacting atomic pair in the native state,

CAA.rij ; r
ij
0 / D

 

r
ij
0

rij

!12

� 2

 

r
ij
0

rij

!6

: (6)
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Different LJ potentials are used because the native contact distances r
ij
0 can be much

longer in the C˛ model. The contacts are coarse-grained to be between the C˛ atoms,
which can be as distant as 14Å. The r�6 is much broader than the r�10 and can lead
to unphysical structures in unfolded states as native pairs interact at long distances.

The LJ potentials are well tested and work for many systems, but they have
limitations for certain applications because the LJ potential has an excluded volume
that moves with the minimum. The effective size of two atoms in contact grows
with r

ij
0 . This additional excluded volume has little effect on the entropy of unfolded

conformations since mostly noncontacts are interacting, but has a large effect on the
entropy of the folded ensemble where most contacts are formed. In cases where the
user wants to control the excluded volume term [32,43], an attractive Gaussian well
coupled with a fixed hard wall-excluded volume is used,

CG.rij ; r
ij
0 / D

 

1 C
�

�NC

rij

�12
!

�

1 C G.rij ; r
ij
0 /
�

� 1; (7)

where

G.rij ; r
ij
0 / D � exp

h

�.rij � r
ij
0 /2=.2�2/

i

: (8)

This unusual construction anchors the depth of the minimum at -1. The width of
the Gaussian well � is determined to model the variable width of the LJ potential.
CAA.1:2r

ij
0 ; r

ij
0 / � �1=2 so � is defined such that G.1:2r

ij
0 ; r

ij
0 / D �1=2 giving

�2 D .r
ij
0 /2=.50 ln 2/. If �NC is significantly smaller than r

ij
0 , (7) reduces to the

more pedagogical form,

CG.rij ; r
ij
0 / !

�

�NC

rij

�12

C G.rij ; r
ij
0 / for �NC � r

ij
0 : (9)

The flexibility of the Gaussian approach also allows for multiple basin contact
potentials for energy landscapes with multiple minima (see Sect. 4.3). Using
multiple LJ potentials with different locations of the minima is not a viable option
because the longest LJ potential would occlude the others with its excluded volume
term. A multibasin Gaussian potential CMB for minima taken from two structures
Ex˛ and Exˇ is given by [32],

CMB.rij ; r ij
˛ ; r

ij

ˇ / D
 

1 C
�

�NC

rij

�12
!

�

1 C G.rij ; r ij
˛ /
�
�

1 C G.rij ; r
ij

ˇ /
�

� 1:

(10)
Analogous to (7), this construction fixes the depth of both minima at �1.

All of the various potential shapes are presented in Fig. 3. It should be noted that
the folding temperature (defined in Sect. 4.1.1) is typically 0.2–0.3 reduced units
higher for the Gaussian potential as compared to LJ because the extra excluded
volume in the LJ potential destabilizes the native state.



The Many Faces of Structure-Based Potentials: From Protein Folding Landscapes... 41

L J 6-12
L J 10-12
Gaussian

V(rij)

rij  (Å)
  

3 6 9 12
-1

0

1

2

Multi-basin

σNC

Fig. 3 Comparison of
Lennard–Jones and Gaussian
contact potentials. Black
curves show LJ contact
potentials with minima at 6Å
and 10Å. The Gaussian
contact potential shown in red
has an excluded volume �NC

that can be set independently
of the location of the
minimum. The dotted red line
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3.3 Molecular Dynamics with SBM

Molecular dynamics uses Newtonian mechanics to evolve the motions of atoms in
time. The interactions defined in the SBM potential define the various forces on the
atoms since force is given by the negative gradient of the potential energy. The sys-
tem is evolved through time in discrete steps. The NVT canonical ensemble is
maintained using a thermostat. Thermostats including a drag term, such as stochastic
dynamics or Langevin dynamics are used for implicit solvent systems like SBMs.
Velocity-rescaling thermostats can introduce heating artifacts when not coupled to
an explicit solvent [41]. Langevin dynamics has been used to model the viscosity
of a solvent [25, 57]. The output of a molecular dynamics simulation is a trajectory,
a time-ordered series of snapshots of the atomic coordinates. The trajectory can be
analyzed as a function of time to uncover kinetic properties or, by application of the
ergodic theorem, as an ensemble to compute thermodynamic properties.

A molecular dynamics trajectory contains the coordinates of all the atoms in the
system, a massive amount of information. Therefore, the trajectory is reduced down
to one or a few reaction coordinates that monitor the progress of the dynamics under
investigation. For protein folding, a useful reaction coordinate would differentiate
between the unfolded ensemble, folding intermediates, and the folded ensemble. A
reaction coordinate for studying a conformational transition would differentiate the
various conformers. A natural reaction coordinate for SBMs is Q, the fraction of
native contacts formed. A contact between the native pair ij is considered formed
if it satisfies rij < �r

ij
0 , where � � 1:2–1.4. In protein folding, low Q would

correspond to the unfolded ensemble, medium Q would contain the transition
state ensemble (TSE) and any intermediates, and high Q the folded ensemble. To
investigate a conformational transition between two structures A and B, monitoring
switching between high QA and high QB would indicate transitions. Other possible
reaction coordinates are root mean square deviation from a reference structure or
radius of gyration. An exciting possibility is to monitor the position of an explicitly
represented FRET probe in order to compare with experimental data [66].
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After the choice of reaction coordinate is made, the value of the coordinate
during the trajectory (or several concatenated trajectories) can be histogrammed to
obtain a potential of mean force (PMF) along the reaction coordinate. If the chosen
coordinate adequately separates two basins, it can be used to identify the transition
state at the peak on the free energy landscape. Q has been shown to be a suitable
coordinate for protein transitions and thus the peaks in F.Q/ can be identified as
TSEs [13] (see Fig. 5). Great care must be exercised when making quantitative
predictions of thermodynamic and kinetic quantities from simplified models. The
kinetics of the system are not simply determined by the free energy landscape, but
are highly dependent on diffusion rates. Diffusion rates vary for different molecular
systems and must be calibrated separately. For discussion of diffusion in SBM see
[30,46,66]. Secondly, the precise values of free energy barriers and thermal stability
are a fine balance and depend on the details of the SBM potential. This said, given
a constant parameterization, kinetic and thermodynamic quantities tend to scale
in a consistent fashion. Fast-folding proteins will consistently have smaller free
energy barriers than slow-folding proteins [11, 69]. Some quantities are robust to
perturbations, in particular the TSE and other so-called geometrical features of the
energy landscape [32, 69].

3.4 SMOG: Automated Generation of SBM

Molecular dynamics simulations have benefited from years of research on computer
algorithms constructed with one goal in mind: speed. Molecular dynamics suites
like GROMACS [23], NAMD [49] and Desmond [7], package all the necessary
algorithms to run stable molecular dynamics and the ability to scale the calculations
to thousands of processors. These packages have made homegrown molecular
dynamics codes built to run SBMs obsolete. SMOG, Structure-based Models in
GROMACS, is a publicly available web server located at http://smog.ucsd.edu [44].
Any PDB structure consisting of standard amino acids, RNA, DNA, and common
ligands, can be uploaded to SMOG, which outputs the necessary coordinate,
topology, and parameter files to run a SBM in GROMACS. This provides the
flexibility necessary to implement efficient and highly scalable SBMs. SMOG in
conjunction with GROMACS version 4.5 scales easily to 128 processors when
simulating a ribosome, �150; 000 atoms. Protein-folding simulations of much
smaller systems scale to �100 atoms per core on a single motherboard.

3.5 Choosing a Graining: C˛ or All-Atom

The C˛ and AA model are both able to describe the properties of the molecular
scaffold’s geometry. When comparing the two models, C˛ and AA, the main
advantage of C˛ is its speed. Because the AA model has roughly eight times more
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Fig. 4 Comparison of SBM and explicit solvent simulations of tRNA accommodation in the
ribosome. Trajectories of three 4 ns explicit solvent-targeted molecular dynamics (TMD) overlay
the probability distribution of 704	s structure-based TMD runs. With such a short sampling time,
the explicit solvent TMD is dominated by steric interactions between the ribosome and the tRNA.
The SBM naturally captures the sterics and is consistent with the detailed model. R30 and Relbow

monitor the position of the tRNA along the accommodation pathway. Simulations were started
from the A/T state (high R30 and Relbow) and stopped at the accommodated (A/A) state. See [66]
for details

atoms and has slower diffusion due to side chain interactions, the C˛ model runs
significantly faster than AA. This speed is important for studying processes with
large barriers, like folding and oligomerization. AA can narrow the speed gap with
parallelization, but not close it completely. Nonetheless, AA has been used to fold
small single domain proteins [69] and even proteins with complex topologies [43].
Many processes without large activation barriers, e.g., native basin dynamics, have
energy landscapes that are easily sampled, and thus the performance hit of AA is of
no consequence.

The explicit representation of atomic coordinates is advantageous, even for
simplified models like SBM. A clear benefit is acting as a bridge between minimalist
models and empirical force fields. Any conformations realized during a simulation
of an AA SBM can be compared with, and used as input for, empirical force
fields with an explicit solvent. Since the sterics are correct, any process that is
dominated by large-scale structural fluctuations should be well represented by an
AA SBM [42,66]. Figure 4 shows targeted molecular dynamics (TMD) simulations
of the tRNA accommodation process in the ribosome, a massive ribonucleoprotein
molecular machine (�2.4 MDa). The trajectories from explicit solvent simulations
overlay the AA SBM trajectories. On a smaller scale, the AA geometry opens
the door to studying side chain degrees of freedom during folding and binding
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simulations. Constricted conformations like polypeptide slipknots, found in coarse-
grained models, are shown to be sterically possible with the AA geometry [43].
Lastly, the AA geometry allows a clear way to add perturbative nonnative chemical
effects like hydrogen bonding [3] and partial charges.

4 Applications

SBMs are being applied to diverse problems, and in the remaining sections we
describe a representative sample of how perfectly funneled SBMs are currently in
use. In each case, the SBM can be constructed and implemented using SMOG and
GROMACS. In Sects. 4.1–4.3, molecular dynamics is used to describe a system
at thermodynamic equilibrium. In this case, it is necessary to adequately sample
configuration space until the quantities of interest have converged. Finally, in
Sect. 4.4 molecular dynamics is used to find deep energetic minima in perturbed
structure-based potentials for molecular modeling applications.

4.1 Folding

4.1.1 Protein Folding

The most-established application of SBM is to the study of protein folding.
Determining the TSE, the shape and size of free energy barriers, and the existence of
folding intermediates are all topics of interest. Figure 5 shows the result of AA SBM
folding simulations for two of the most thoroughly studied proteins, chymotrypsin
inhibitor-2 (CI2) and the SH3 domain. These two proteins are two-state folders,
meaning the protein only populates two basins spanned by a cooperative transition.

Figure 5a,d shows representative traces of Q versus time during constant tem-
perature molecular dynamics near folding temperature TF. TF is the temperature
such that the folding and unfolding basins are equally populated. Simulations are
performed at TF because it maximizes the sampling rate of the folding transition. TF

is determined by running simulations at high and low temperatures, and iteratively
converging on a temperature where both folding and unfolding is observed. Q is
defined as the fraction of native residue pairs with at least one atom–atom contact
within 1.2 times its native separation. Alternative definition of Q, such as the
fraction of atom–atom contacts formed, may shift the locations of basins in the
resulting free energy landscape, but will preserve the heights of any barriers.

Q traces from long molecular dynamics trajectories at various temperatures can
be combined using weighted histogram analysis (WHAM) [31], to obtain an optimal
density of states. The density of states can then be used to extrapolate F.Q/ at any
temperature (Fig. 5b, e). Always, care must be taken to ensure that the trajectories
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Fig. 5 All-atom structure-based simulations of two state-folding proteins CI2 (top) and SH3
domain (bottom). PDB codes: 1FMK, 1YPA. (a,d) The reaction coordinate Q plotted as a
function of time for a typical simulation near TF. Both proteins exhibit transitions between a
folded ensemble at Q � 0:8 and an unfolded ensemble at Q � 0:1. (b,e) Free energy F.Q/

for temperatures 0.98TF, TF, and 1.02TF calculated by weighted histogram analysis of long
constant temperature MD trajectories. A set of “long” trajectories typically contain 30 folded to
unfolded transitions. (c,f) Transition state ensemble (TSE) for the two proteins. Contact formation
probabilities are calculated by an unweighed average of all configurations 0:40 < Q < 0:45.
The upper triangle shows results from the C˛ model and the lower triangle shows the AA model.
Secondary structure is denoted below the contact maps as are the positions of the three hairpin turns
in SH3. CI2 has a diffuse TSE that resembles the native state. The contact probability is largely
predicted by sequence separation. SH3 has a more polarized TSE with contacts from the first ten
residues largely absent. For both proteins, the introduction of energetic and structural heterogeneity
through the AA geometry creates a more specific and less diffuse TSE. The simulations were
prepared using SMOG v1.0.6 [44] with default parameters

reflect equilibrium. One easy method is to chop all trajectories in half and verify
that F.Q/ and the TSE are the same for both halves. The TSE is the ensemble of
structures that compose the bottleneck to folding. CI2 and SH3 each have a single
TSE that connects the unfolded state to the folded state defined by the structure
populating the top of F.Q/. Figure 5c,f shows the average contact maps of the struc-
tures with 0:4 < Q < 0:45. The contact formation probabilities can be connected
to ˆ-value analysis, an experimental technique that estimates the contribution of a
particular residue’s contacts to the TSE [19]. In simulation, ˆi is given by

ˆi D P TSE
i � P U

i

P F
i � P U

i

; (11)

where Pi is the probability that residue i forms its contacts and U/F refers to the
unfolded/folded ensembles [36]. ˆi near 1 means that residue i is very native-like
in the TSE and a ˆi near 0 means that residue i is still unfolded in the TSE.
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Since the TSE is a simple average over structures, it can hold hidden complexity.
For some proteins, the TSE is composed of multiple routes through the TSE [6, 22].
Consider SH3; its TSE could be composed of two routes, a major route where
hairpin 2 and hairpin 3 form first and a minor route where hairpin 1 and hairpin 2
form first (Fig. 5f). Multiple routes can be identified by clustering the contact maps
of TSE structures using the number of shared contacts as a similarity measure [6].
These routes represent entropically viable routes through the TSE. Thus, two real
proteins that fold to the same structure may follow seemingly very different paths
due to minor energetic differences.

4.1.2 Multimeric Folding and Binding

Many important biological processes are regulated by the homo- or hetero-oligomers
that are formed when proteins bind [70]. A large survey of protein dimers showed
that the binding mechanisms found in experiments were reproduced by SBMs [36],
which gives strong evidence that protein binding is controlled by protein geometry.
The energy landscapes of these proteins exhibited a rich variety of folding routes
and binding mechanisms. The interplay of folding and binding can be explored in
SBMs by introducing interface contacts into the native contact map. The contact
map of crystallographic structures of protein dimers are analyzed in the same
way as for monomers, atoms spatially close between the protomers are considered
native contacts. Folding trajectories of protomers A and B will have three relevant
order parameters, QA, QB, and QAB. Note that when analyzing the TSE and
folding routes of homo-oligomeric proteins, clustering the TSE is crucial [6]. This
is because the structural symmetry is broken by the requirement of labeling the
protomers, i.e., protomer A folds then binds protomer B is the same route as B folds
then binds A.

Observing binding in simulations is complicated by the entropy loss of binding.
In order to observe binding events, the effective concentration of monomers is
often much higher than in vivo. The concentration of monomers is imposed either
by a linker between the monomers [36], periodic boundary conditions [64], or
an umbrella potential [6, 43, 52] (all available in GROMACS). The umbrella
potential would be implemented as a harmonic center of mass constraint, making
the simulated potential

Vdimer D VAA C k
�

rCM � rCM
0

�2
; (12)

where rCM is the distance between the centers of mass and rCM
0 is the distance

in the native state. k is calibrated to be as weak as possible while still observing
binding. Varying k can model varying protomer concentration. The stability of the
dimer versus the monomers can be controlled by scaling the strength of the interface
contacts.
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4.2 Native Basin Dynamics

Entropically driven motions accessible via thermal fluctuations are important
components of functional protein dynamics [20]. These motions are difficult or
impossible to intuit from rigid crystallographic structure analysis [42]. Analysis
of small-angle x-ray scattering (SAXS) on C-terminal Src Kinase (Csk) indicated
that Csk occupies extended conformations in solution, whereas the crystal structure
showed a compact arrangement of Csk’s SH2, SH3, and kinase domains [27].
Typically, a candidate structure for the protein structure is determined by fitting a
rigid body model to the SAXS data, but this presumes that Csk assumes a relatively
static structure in solution. In order to characterize the Csk solution structure,
constant temperature molecular dynamics simulations of the Csk native basin were
performed using the AA SBM. Theoretical scattering curves were computed from
the resulting native ensemble and compared with the experimental scattering data.
Jamros et al. [27] showed that in all cases, theoretical scattering curves generated
from mixed populations of Csk structures fit the empirical SAXS data better than
any rigid model. This suggests that Csk populates a broad ensemble of structures
in solution, adopting conformations not observed in the crystal structure. More
pertinently, an SBM is able to suggest a solution ensemble of structures for Csk
using only information from the crystal structure. This procedure, termed Safe-
SAXS, should be widely applicable to analyzing solution structures of biological
macromolecules.

4.3 Multiple Basin Models

When a protein is able to be crystallized in substantially different conformations,
it implies the energy landscape has multiple minima. This behavior can be seen in
systems with a high degree of structural symmetry. A dual basin-funneled landscape
solved the mystery of the Rop dimer, a dimer of two helix bundles that switched
from a parallel arrangement to an antiparallel arrangement upon optimization of the
hydrophobic core [21, 34, 52]. An SBM was used that combined the two crystal
structure contact maps into a single native contact map. Thermodynamic sampling
of the landscape showed that the parallel and antiparallel structures were of similar
stability, so small experimental perturbations could tip the balance between the
structures [52].

Combining multiple structures into a single landscape has also been used to study
conformational transitions in adenylate kinase (AKE) [26, 67, 68]. AKE has two
domains, LID and NMP, that must undergo large conformational changes during its
enzymatic function (Fig. 6). The conformational change is captured by two crystal
structures, one in the open state and the other in a closed state, with native contact
maps MO and MC, respectively. The contacts that are in both maps is given by
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Fig. 6 Modeling conformational transitions in adenylate kinase (AKE). (a) AKE contains two
domains, NMP and LID, that undergo >25Å motions between open (red) and closed (green)
states. These motions are coupled with ligand (shown as orange spheres) binding as it catalyzes
ATP+AMP�2ADP. The model is built using structures with PDB codes 1AKE and 4AKE. (b)
The relative occupation of the closed and open states can be tuned to experimental data by varying
the strength of the subset of contacts only existing in the closed state MC. MBB is scaled by 0.6
(red) to 1.2 (black) relative to the open contacts. (c) The subset of atomic contacts existing in both
states Msame. The dotted lines designate a deviation of less than 0.5Å between states. Contacts that
have significant shifts between structures may impart strain on the protein and can be included with
double minima Gaussian potentials. (d) The subset of atomic contacts existing only in the closed
state. Black circles show contacts of atoms in the LID domain and red circles show contacts of
atoms in the NMP domain. See [68] for details

Msame D MO
T

MC and the complement of Msame are the contacts that are in
either map but not both Mdiff. Results from a SBM with native contact map Mdiff is
shown in Fig. 6b. The relative stabilities of the two states can be easily tuned in the
SBM. The distance between contacts that exist in both states (Fig. 6c) may change
between structures and can be included with double minima Gaussian potentials
(Sect. 3.2.3). How to handle multiple dihedral angle values is less obvious. Whitford
et al. [68] simply used the dihedrals from the open state, viewing the closed state
as an excitation of the open state. Similar methods have been used to look at
conformational changes in protein kinase A [24] and kinesin [25].
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4.4 Molecular Modeling

SBM are structurally robust, which makes them ideal candidates for molecular
modeling applications. During molecular dynamics the native bias maintains a
native-like configuration but all interactions are malleable. Under molecular dynam-
ics, a system populates the lowest free energy basins, and coupled with simulated
annealing can even search for the lowest potential energy minima [63]. Through the
introduction of external biasing potentials, AA SBMs built from high-resolution
structures can reveal candidate AA structures from low resolution experimental
data.

In a recent study of the ribosomal elongation cycle, Ratje et al. [50] used
multiparticle cryoelectron microscopy analysis to capture subpopulations of EF-G-
ribosome complexes at subnanometer resolution. While this resolution is not fine
enough to achieve atomic details, the known crystallographic structure can be used
to obtain atomic models of the microscopy data with a procedure termed MDFIT
[65]. MDFIT biases the AA SBM with an energetic term developed in Orzechowski
and Tama [48], which uses the correlation between the simulated and experimental
electron density. The overall potential function therefore becomes

Vmodel D VAA C Vmap D VAA C W
X

ijk


sim
ijk 


exp
ijk ; (13)

where W is an overall weight and 
sim
ijk and 


exp
ijk are the normalized electron

densities at voxel .i; j; k/ and VAA is the AA SBM potential. A molecular dynamics
simulation initialized at the crystallographic structure will distort to maximize the
overlap between the simulated structure and the experimental electron density. The
structure-based potential naturally maintains tertiary contacts present in the crystal
structure without the need for ad hoc restraints.

The electron density map works well as a global bias, but local biases can also be
introduced. Candidate structures for protein–protein complexes can be derived by
introducing interprotein contacts from bioinformatic analysis and minimizing the
resulting structure-based potential with molecular dynamics. Schug et al. [51] were
able to predict the structure of the Spo0B/Spo0F two-component signal transduction
(TCS) complex within 2.5Å of an existing crystal structure. TCS is ruled by
transient interactions, posing harsh challenges to obtain atomic resolution structures.
These transient interactions though have bioinformatic signatures, which provide
the external biasing potential needed for modeling. Short-range contact potentials
were introduced between correlated residues and the resulting potential

Vmodel D VAA C k.rCM/2 C
X

fi;j g
CAA.rij ; r/; (14)
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where rCM is the distance between the proteins’ centers of mass, fi; j g denotes
the correlated residues, CAA is Eqn. 6, rij the distance between those residues’ C˛

atoms and r D 7 Å. A weak center of mass constraint, as with multimeric folding
(see Sect. 4.1.2), is a common method of encouraging two molecules to dock. The
resulting structure from the AA SBM simulations can be directly used as input to
an AA empirical force field for additional minimization.

5 Concluding Remarks

The principle of minimal frustration and the funneled landscape provide the theo-
retical framework for SBMs. We have presented numerous applications of SBMs,
including protein folding and oligomerization, structure–function relationships
in protein conformational transitions and structural modeling of protein–protein
and ribonucleoprotein complexes. These models are publicly available at SMOG
http://smog.ucsd.edu. Recent technical improvements in computer hardware for
molecular dynamics simulations should allow for a new level of collaboration
between simplified protein models and explicit solvent models. Protein folding
simulations on the millisecond timescale will enable quantitative characterization
of the roughness of the folding energy landscape [37, 54]. As experimentalists
continue pushing boundaries in the characterization of molecular machines at the
single molecule level, further theoretical investigation is needed to assess how the
interplay of global properties with specific energetic details shapes the dynamics
of these large macromolecular complexes [66]. We expect the importance of large-
scale structural fluctuations, largely controlled by geometry, to be a central theme in
the discussion of molecular machines in the years to come.
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